The analyze of the applicability of diffusion approximation for the radiation transfer equation with account of Сompton scattering
Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 1, pp. 99-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with diffusion approximation for the radiation transfer equation which takes into account Сompton scattering on electrons. An analytical and a numerical examples are used to compare the solution of radiation transfer equation with it's diffusion approximation.
@article{DVMG_2011_11_1_a9,
     author = {I. P. Yarovenko},
     title = {The analyze of the applicability of diffusion approximation for the radiation transfer equation with account of {{\CYRS}ompton} scattering},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {99--107},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a9/}
}
TY  - JOUR
AU  - I. P. Yarovenko
TI  - The analyze of the applicability of diffusion approximation for the radiation transfer equation with account of Сompton scattering
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2011
SP  - 99
EP  - 107
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a9/
LA  - ru
ID  - DVMG_2011_11_1_a9
ER  - 
%0 Journal Article
%A I. P. Yarovenko
%T The analyze of the applicability of diffusion approximation for the radiation transfer equation with account of Сompton scattering
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2011
%P 99-107
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a9/
%G ru
%F DVMG_2011_11_1_a9
I. P. Yarovenko. The analyze of the applicability of diffusion approximation for the radiation transfer equation with account of Сompton scattering. Dalʹnevostočnyj matematičeskij žurnal, Tome 11 (2011) no. 1, pp. 99-107. http://geodesic.mathdoc.fr/item/DVMG_2011_11_1_a9/

[1] U. Fano, L. Spenser, M. Berger, Perenos gamma izlucheniya, Gosatomizdat, M., 1963

[2] I. P. Yarovenko, “O diffuzionnom priblizhenii dlya uravneniya perenosa izlucheniya s uchetom komptonovskogo rasseyaniya”, Dalnevostochnyi mat. zhurnal, 9:1-2 (2009), 209–218 | MR

[3] D. S. Anikonov, D. S. Konovalova, “Kraevaya zadacha dlya uravneniya perenosa s chisto komptonovskim rasseyaniem”, Sibirskii matematicheskii zhurnal, 46:1 (2005), 3–16 | MR | Zbl

[4] D. S. Anikonov, V. G. Nazarov, I. V. Prokhorov, Poorly Visible Media in X-Ray Tomography, VSP, Utrecht-Boston, 2002

[5] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978 | MR

[6] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, FIZMATLIT, M., 2001

[7] I. M. Sobol, Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[8] J. H. Hubbell, S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 Kev to 20 Mev for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, Preprint National Institute of Standard and Technology, Gaithersburg, 1995

[9] P. L'Ecuyer, S. Cote, “Implementing a Random Number Package with Splitting Facilities”, ACM Trans. on Math. Software, 17:1 (1991), 98–111 | DOI | MR | Zbl

[10] V. S. Galishev, V. I. Ogievetskii, A. N. Orlov, “Teoriya mnogokratnogo rasseyaniya gamma-luchei”, Uspekhi fizicheskikh nauk, 51:2 (1957), 161–214 | DOI