Finite-dimensional stabilization with given rate for the Navier -- Stokes systems
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 199-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stabilization for unstable stationary solution of operator equation with quadratic nonlinearity is studied. The bounded finite-dimensional feedback control exponentially stabilizing this solution is presented.
@article{DVMG_2010_10_2_a9,
     author = {A. Yu. Chebotarev},
     title = {Finite-dimensional stabilization with given rate for the {Navier} -- {Stokes} systems},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {199--204},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a9/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
TI  - Finite-dimensional stabilization with given rate for the Navier -- Stokes systems
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 199
EP  - 204
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a9/
LA  - ru
ID  - DVMG_2010_10_2_a9
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%T Finite-dimensional stabilization with given rate for the Navier -- Stokes systems
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 199-204
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a9/
%G ru
%F DVMG_2010_10_2_a9
A. Yu. Chebotarev. Finite-dimensional stabilization with given rate for the Navier -- Stokes systems. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 199-204. http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a9/

[1] A. V. Fursikov, “Stabilizability of two-dimensional Navier – Stokes equations with help of a boundary feedback control”, J. Math. Fluid Mech, 3:3 (2001), 259–301 | DOI | MR | Zbl

[2] A. V. Fursikov, “Stabilizatsiya s granitsy reshenii sistemy Nave – Stoksa: razreshimost i obosnovanie vozmozhnosti chislennogo modelirovaniya”, Dalnevost. matem. zhurn., 4:1 (2003), 86–100 | MR

[3] A. V. Fursikov, “Stabilization for the 3D Navier – Stokes system by feedback boundary control”, Discrete and Cont. Dyn. Syst., 10:1–2 (2004), 289–314 | MR | Zbl

[4] V. Barbu, “Feedback stabilization of Navier – Stokes equations”, ESAIM: Control, Optimisation and Calculus of Variations, 9 (2003), 197–205 | DOI | MR

[5] V. Barbu, R. Triggiani, “Internal stabilization of Navier – Stokes equations with finite-dimensional controllers”, Indiana Univ. Math. J., 53:5 (2004), 1443–1494 | DOI | MR | Zbl

[6] V. Barbu, I. Lasiecka, R. Triggiani, “Abstract settings for tangential boundary stabilization of Navier – Stokes equations by high- and low-gain feedback controllers”, Nonlinear Analysis, 64:12 (2006), 2704–2746 | DOI | MR | Zbl

[7] J.-P. Raymond, “Feedback boundary stabilization of the three-dimensional incompressible Navier – Stokes equations”, J. Math. Pures Appl, 87:6 (2007), 627–669 | DOI | MR | Zbl

[8] S. S. Ravindran, “Stabilization of Navier – Stokes equations by boundary feedback”, Intern. J. of Num. Analysis and Modeling, 4:3–4 (2007), 608–624 | MR | Zbl

[9] R. Temam, Uravneniya Nave – Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl

[10] A. Yu. Chebotarev, “Obratnye zadachi dlya nelineinykh evolyutsionnykh uravnenii tipa Nave – Stoksa”, Differentsialnye uravneniya, 31:3 (1995), 517–524 | MR | Zbl

[11] M. Sermange, R. Temam, “Some mathematical questions related to the MHD equations”, Comm. on Pure and Applied Math., 36 (1983), 635–664 | DOI | MR | Zbl

[12] A. Yu. Chebotarev, “Variatsionnye neravenstva dlya operatora tipa Nave – Stoksa i odnostoronnie zadachi dlya uravnenii vyazkoi teploprovodnoi zhidkosti”, Matematicheskie zametki, 70:2 (2001), 296–307 | DOI | MR | Zbl