Inverse extremum problems for stationary equations of convection-diffusion-reaction
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 170-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the coefficient inverse extremum problem for stationary equations of convection-diffusion-reaction in a bounded domain with mixed boundary conditions. We prove the stability of the solution of this problem with respect to small perturbations of both the cost functional and of the given function entering into the initial boundary value problem. The numerical algorithm is developed for solution of this extremum problem. It is based on Newton method for solving nonlinear equations and discretization of the linear boundary value problem by finite difference method or finite element method. Some results of numerical experiments are discussed.
@article{DVMG_2010_10_2_a6,
     author = {O. V. Soboleva},
     title = {Inverse extremum problems for stationary equations of convection-diffusion-reaction},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {170--184},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a6/}
}
TY  - JOUR
AU  - O. V. Soboleva
TI  - Inverse extremum problems for stationary equations of convection-diffusion-reaction
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 170
EP  - 184
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a6/
LA  - ru
ID  - DVMG_2010_10_2_a6
ER  - 
%0 Journal Article
%A O. V. Soboleva
%T Inverse extremum problems for stationary equations of convection-diffusion-reaction
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 170-184
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a6/
%G ru
%F DVMG_2010_10_2_a6
O. V. Soboleva. Inverse extremum problems for stationary equations of convection-diffusion-reaction. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 170-184. http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a6/

[1] G. I. Marchuk, Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982, 319 pp. | MR

[2] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[3] A. A. Samarskii, P. N. Vabischevich, Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, Editorial URSS, Moskva, 2004, 480 pp.

[4] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 1997, no. 14, 995–1013 | DOI | MR | Zbl

[5] B. Lowe, W. Rundell, “The determination of a coefficient in an elliptic equation from average flux data”, J. Comput. Math., 70 (1996), 173–187 | DOI | MR | Zbl

[6] D. A. Tereshko, “Chislennoe reshenie zadach identifikatsii parametrov primesi dlya statsionarnykh uravnenii massoperenosa”, Vych. tekhn., 9:4 (2004), 92–98

[7] E. A. Kalinina, “Chislennoe issledovanie obratnoi ekstremalnoi zadachi identifikatsii mladshego koeffitsienta dvumernogo ellipticheskogo uravneniya”, Dalnevost. matem. zhurn., 6:1-2 (2005), 57–70

[8] G. V. Alekseev, E. A. Kalinina, “Identifikatsiya mladshego koeffitsienta dlya statsionarnogo uravneniya konvektsii – diffuzii – reaktsii”, Sib. zhurn. industr. matem., 10:1 (2007), 3–16 | MR | Zbl

[9] G. V. Alekseev, “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zhurn. vychisl. matem. i matem. fiz., 47:6 (2007), 1055–1076 | MR | Zbl

[10] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekh. tekhn. fiz., 49:4 (2008), 24–35 | MR | Zbl

[11] G. V. Alekseev, O. V. Soboleva, “Ob ustoichivosti reshenii ekstremalnykh zadach dlya statsionarnykh uravnenii massoperenosa”, Dalnevost. matem. zhurn., 9:1-2 (2009), 5–14 | MR

[12] G. V. Alekseev, D. A. Tereshko, Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 365 pp.

[13] V. G. Mazya, Prostranstva Soboleva, Izd-vo LGU, L., 1985, 416 pp. | MR | Zbl

[14] P. Grisvard, Elliptic problems in nonsmooth domains. Monograph and studies in mathematics, Pitman, London, 1985 | MR | Zbl

[15] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR | Zbl

[16] G. V. Alekseev, O. V. Soboleva, D. A. Tereshko, Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnogo uravneniya konvektsii – diffuzii – reaktsii, Preprint No5 In-ta prikl. matem. DVO RAN, Dalnauka, Vladivostok, 2008, 40 pp. | MR

[17] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[18] Olivier Pironneau, Frederic Hecht, Antoine Le Hyaric, Jacques Morice, FreeFem++ version 3.9-0 (2d and 3d), http://www.freefem.org/ff++/index.htm

[19] Home–Scilab WebSite, http://www.scilab.org