Continuity theorems and algorithmical problems in classical risk model
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 153-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper an analog of the Bernstein theorem about an approximation of a probability distribution by a mixture of exponential distribution is proved in the metric $L_1$. Different generalizations of classical risk model on a case of dependent financial and insurance risks are constructed. In this case a possibility of a paralleling of algorithms of ruin probability calculation is analyzed.
@article{DVMG_2010_10_2_a4,
     author = {T. A. Kalmykova and Yu. N. Kharchenko and G. Sh. Tsitsiashvili},
     title = {Continuity theorems and algorithmical problems in classical risk model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {153--161},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a4/}
}
TY  - JOUR
AU  - T. A. Kalmykova
AU  - Yu. N. Kharchenko
AU  - G. Sh. Tsitsiashvili
TI  - Continuity theorems and algorithmical problems in classical risk model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 153
EP  - 161
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a4/
LA  - ru
ID  - DVMG_2010_10_2_a4
ER  - 
%0 Journal Article
%A T. A. Kalmykova
%A Yu. N. Kharchenko
%A G. Sh. Tsitsiashvili
%T Continuity theorems and algorithmical problems in classical risk model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 153-161
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a4/
%G ru
%F DVMG_2010_10_2_a4
T. A. Kalmykova; Yu. N. Kharchenko; G. Sh. Tsitsiashvili. Continuity theorems and algorithmical problems in classical risk model. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 153-161. http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a4/

[1] G. Sh. Tsitsiashvili, “Vychislenie veroyatnosti razoreniya v klassicheskoi modeli riska”, Avtomatika i telemekhanika, 2009, no. 12, 187–194 | MR | Zbl

[2] R. Norberg, “Ruin problems with assets and liabilities of diffusion type”, Stochastic Process. Appl., 81:2 (1999), 255–269 | DOI | MR | Zbl

[3] Q. Tang, G. Tsitsiashvili, “Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks”, Stochast. Process. Appl., 108:2 (2003), 299–325 | DOI | MR | Zbl

[4] V. M. Zolotarev, “Stokhasticheskaya nepreryvnost sistem massovogo obsluzhivaniya”, Teoriya veroyatnostei i ee primeneniya, 21:2 (1976), 260–279 | MR | Zbl

[5] A. Feldmann, W. Whitt, “Fitting mixtures of exponentials to long-tailed distributions to analyze network perfomance models”, Perfomance Evaluation, 31 (1998), 245–279 | DOI | MR

[6] D. Dufresne, “Stochastic life annuities abstract”, American Actuarial Journal, 11:1 (2007), 136–157 | DOI | MR

[7] B. Ko, A. C. Y. Ng, “Stochastic Annuities”, Daniel Dufresne, Discussions of papers already published, American Actuarial Journal, 11:3 (2007), 170–171 | DOI | MR