Some applications of extremal decompositions in the geometric function theory
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 130-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

The applications of the extremal decompositions of the domains and condensers in the geometric function theory are considered. We prove new theorems for the families of meromorphic functions without common values, the multipoint distortion theorems and the estimates of the coefficients for univalent functions. Also, we get some new inequalities for polynomials. All results are obtained by the unified method using the suitable properties of the extremal decompositions. Previously, these properties were established by capacity approach and symmetrization.
@article{DVMG_2010_10_2_a3,
     author = {V. N. Dubinin and D. A. Kirillova},
     title = {Some applications of extremal decompositions in the geometric function theory},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {130--152},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - D. A. Kirillova
TI  - Some applications of extremal decompositions in the geometric function theory
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 130
EP  - 152
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a3/
LA  - ru
ID  - DVMG_2010_10_2_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A D. A. Kirillova
%T Some applications of extremal decompositions in the geometric function theory
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 130-152
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a3/
%G ru
%F DVMG_2010_10_2_a3
V. N. Dubinin; D. A. Kirillova. Some applications of extremal decompositions in the geometric function theory. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 130-152. http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a3/

[1] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii. II”, Algebra i analiz, 9:5 (1997), 1–50 | MR | Zbl

[2] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl

[3] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co, New York, 1973 | MR | Zbl

[4] V. N. Dubinin, “Obobschennye kondensatory i asimptotika ikh emkostei pri vyrozhdenii nekotorykh plastin”, Zap. nauchn. semin. POMI, 302, 2003, 38–51 | MR

[5] V. N. Dubinin, N. V. Eirikh, “Nekotorye primeneniya obobschennykh kondensatorov v teorii analiticheskikh funktsii”, Zap. nauchn. semin. POMI, 314, 2004, 52–75 | MR | Zbl

[6] V. N. Dubinin, D. A. Kirillova, “K zadacham ob ekstremalnom razbienii”, Zap. nauchn. semin. POMI, 357, 2008, 54–74 | MR

[7] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Zap. nauchn. semin. POMI, 254, 1998, 76–94 | MR

[8] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo premennogo, Nauka, M., 1966 | MR | Zbl

[9] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1 (1994), 3–76 | MR | Zbl

[10] D. A. Kirillova, “Ob odnolistnykh funktsiyakh bez obschikh znachenii”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2010, no. 9, 86–89 | MR | Zbl

[11] V. N. Dubinin, “O kvadratichnykh formakh, porozhdennykh funktsiyami Grina i Robena”, Matematicheskii sbornik, 200:10 (2009), 25–38 | DOI | MR | Zbl

[12] N. A. Lebedev, Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975 | MR | Zbl

[13] A. K. Bakhtin, G. P. Bakhtina, Yu. B. Zelinskii, Topologo-algebraicheskie struktury i geometricheskie metody v kompleksnom analize, 73, In-t matematiki NAN Ukraïni, Kiïv, 2008 | MR | Zbl

[14] A. K. Bakhtin, “Neravenstva dlya vnutrennikh radiusov nenalegayuschikh oblastei i otkrytykh mnozhestv”, Ukrainskii metematicheskii zhurnal, 61:5 (2009), 596–610 | MR | Zbl

[15] E. Schippers, “Distortion theorems for higher-order Schwarzian derivatives of univalent functions”, Proc. Amer. Math. Soc., 128:11 (2000), 3241–3249 | DOI | MR | Zbl

[16] D. Kraus, O. Roth, “O Weighted distortion in conformal mapping in euclidean, hiperbolic and elliptic geometry”, Ann. Acad. Sci. Fenn. Math., 31 (2006), 111–130 | MR | Zbl

[17] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[18] V. N. Dubinin, “Emkosti kondensatorov, obobscheniya lemm Gretsha i simmetrizatsiya”, Zap. nauchn. semin. POMI, 337, 2006, 73–100 | MR | Zbl

[19] A. Yu. Solynin, “Granichnoe iskazhenie i ekstremalnye zadachi v nekotrykh klassakh odnolistnykh funktsii”, Zap. nauchn. semin. POMI, 204, 1993, 115–142

[20] G. M. Goluzin, “Nekotorye otsenki koeffitsientov odnolistnykh funktsii”, Matematicheskii sbornik, 3 (1938), 321–330 | Zbl

[21] P. Borwein, T. Erdelyi, Polinomials and polynomial inequalities, Springer-Verlag, New York, 1995 | MR