Some applications of extremal decompositions in the geometric function theory
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 130-152
Voir la notice de l'article provenant de la source Math-Net.Ru
The applications of the extremal decompositions of the domains and
condensers in the geometric function theory are considered. We
prove new theorems for the families of meromorphic functions
without common values, the multipoint distortion theorems and the
estimates of the coefficients for univalent functions. Also, we
get some new inequalities for polynomials. All results are
obtained by the unified method using the suitable properties of
the extremal decompositions. Previously, these properties were
established by capacity approach and symmetrization.
@article{DVMG_2010_10_2_a3,
author = {V. N. Dubinin and D. A. Kirillova},
title = {Some applications of extremal decompositions in the geometric function theory},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {130--152},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a3/}
}
TY - JOUR AU - V. N. Dubinin AU - D. A. Kirillova TI - Some applications of extremal decompositions in the geometric function theory JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2010 SP - 130 EP - 152 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a3/ LA - ru ID - DVMG_2010_10_2_a3 ER -
V. N. Dubinin; D. A. Kirillova. Some applications of extremal decompositions in the geometric function theory. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 2, pp. 130-152. http://geodesic.mathdoc.fr/item/DVMG_2010_10_2_a3/