Continuity of reaching moment distribution for autoregressive random sequence
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 80-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a continuity of a reaching moment distribution for an autoregressive random sequence if an increment of a random addition is measured in the uniform metric is proved.
@article{DVMG_2010_10_1_a9,
     author = {Yu. N. Kharchenko and G. Sh. Tsitsiashvili},
     title = {Continuity of reaching moment distribution for autoregressive random sequence},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {80--85},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a9/}
}
TY  - JOUR
AU  - Yu. N. Kharchenko
AU  - G. Sh. Tsitsiashvili
TI  - Continuity of reaching moment distribution for autoregressive random sequence
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 80
EP  - 85
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a9/
LA  - ru
ID  - DVMG_2010_10_1_a9
ER  - 
%0 Journal Article
%A Yu. N. Kharchenko
%A G. Sh. Tsitsiashvili
%T Continuity of reaching moment distribution for autoregressive random sequence
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 80-85
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a9/
%G ru
%F DVMG_2010_10_1_a9
Yu. N. Kharchenko; G. Sh. Tsitsiashvili. Continuity of reaching moment distribution for autoregressive random sequence. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 80-85. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a9/

[1] G. Sh. Tsitsiashvili, M. A. Osipova, “Tochnoe reshenie zadachi A. A. Novikova o momentakh dostizheniya dlya avtoregressionnoi posledovatelnosti”, Dalnevostochnyi matematicheskii zhurnal, 9:1–2 (2009), 182–189 | MR

[2] A. Feldmann, W. Whitt, “Fitting mixtures of exponentials to long-tailed distributions to analyze network perfomance models”, Perfomance Evaluation, 31 (1998), 245–279 | DOI | MR

[3] V. M. Zolotarev, “Stokhasticheskaya nepreryvnost sistem massovogo obsluzhivaniya”, Teoriya veroyatnostei i ee primeneniya, 21:2 (1976), 260–279 | MR | Zbl