Continuity of reaching moment distribution for autoregressive random sequence
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 80-85
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper a continuity of a reaching moment distribution for an autoregressive random sequence if an increment of a random addition is measured in the uniform metric is proved.
@article{DVMG_2010_10_1_a9,
author = {Yu. N. Kharchenko and G. Sh. Tsitsiashvili},
title = {Continuity of reaching moment distribution for autoregressive random sequence},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {80--85},
year = {2010},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a9/}
}
TY - JOUR AU - Yu. N. Kharchenko AU - G. Sh. Tsitsiashvili TI - Continuity of reaching moment distribution for autoregressive random sequence JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2010 SP - 80 EP - 85 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a9/ LA - ru ID - DVMG_2010_10_1_a9 ER -
Yu. N. Kharchenko; G. Sh. Tsitsiashvili. Continuity of reaching moment distribution for autoregressive random sequence. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 80-85. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a9/
[1] G. Sh. Tsitsiashvili, M. A. Osipova, “Tochnoe reshenie zadachi A. A. Novikova o momentakh dostizheniya dlya avtoregressionnoi posledovatelnosti”, Dalnevostochnyi matematicheskii zhurnal, 9:1–2 (2009), 182–189 | MR
[2] A. Feldmann, W. Whitt, “Fitting mixtures of exponentials to long-tailed distributions to analyze network perfomance models”, Perfomance Evaluation, 31 (1998), 245–279 | DOI | MR
[3] V. M. Zolotarev, “Stokhasticheskaya nepreryvnost sistem massovogo obsluzhivaniya”, Teoriya veroyatnostei i ee primeneniya, 21:2 (1976), 260–279 | MR | Zbl