Cooperative effects in closed queueing networks
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 66-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cooperative effects are investigated in an aggregated closed queueing network. A phase transition connected with the cooperative effects and similar to the law of zero and one in the probability theory is established.
@article{DVMG_2010_10_1_a7,
     author = {M. A. Osipova and A. B. Talalaeva and G. Sh. Tsitsiashvili},
     title = {Cooperative effects in closed queueing networks},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {66--69},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a7/}
}
TY  - JOUR
AU  - M. A. Osipova
AU  - A. B. Talalaeva
AU  - G. Sh. Tsitsiashvili
TI  - Cooperative effects in closed queueing networks
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 66
EP  - 69
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a7/
LA  - ru
ID  - DVMG_2010_10_1_a7
ER  - 
%0 Journal Article
%A M. A. Osipova
%A A. B. Talalaeva
%A G. Sh. Tsitsiashvili
%T Cooperative effects in closed queueing networks
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 66-69
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a7/
%G ru
%F DVMG_2010_10_1_a7
M. A. Osipova; A. B. Talalaeva; G. Sh. Tsitsiashvili. Cooperative effects in closed queueing networks. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 66-69. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a7/

[1] G. P. Basharin, A. L. Tolmachev, “Teoriya setei massovogo obsluzhivaniya i ee prilozheniya k analizu informatsionno-vychislitelnykh sistem”, Itogi nauki i tekhniki, ser. Teoriya veroyatnostei, 21, VINITI, M., 1983, 3–119 | MR | Zbl

[2] G. I. Ivchenko, V. A. Kashtanov, I. N. Kovalenko, Teoriya massovogo obsluzhivaniya, Vyssh. shkola, M., 1982 | Zbl

[3] R. Serfozo, Introduction to Stochastic Networks, Springer Verlag, New York, 1999 | MR | Zbl