Cooperative effects in closed queueing networks
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 66-69
Cet article a éte moissonné depuis la source Math-Net.Ru
Cooperative effects are investigated in an aggregated closed queueing network. A phase transition connected with the cooperative effects and similar to the law of zero and one in the probability theory is established.
@article{DVMG_2010_10_1_a7,
author = {M. A. Osipova and A. B. Talalaeva and G. Sh. Tsitsiashvili},
title = {Cooperative effects in closed queueing networks},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {66--69},
year = {2010},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a7/}
}
TY - JOUR AU - M. A. Osipova AU - A. B. Talalaeva AU - G. Sh. Tsitsiashvili TI - Cooperative effects in closed queueing networks JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2010 SP - 66 EP - 69 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a7/ LA - ru ID - DVMG_2010_10_1_a7 ER -
M. A. Osipova; A. B. Talalaeva; G. Sh. Tsitsiashvili. Cooperative effects in closed queueing networks. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 66-69. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a7/
[1] G. P. Basharin, A. L. Tolmachev, “Teoriya setei massovogo obsluzhivaniya i ee prilozheniya k analizu informatsionno-vychislitelnykh sistem”, Itogi nauki i tekhniki, ser. Teoriya veroyatnostei, 21, VINITI, M., 1983, 3–119 | MR | Zbl
[2] G. I. Ivchenko, V. A. Kashtanov, I. N. Kovalenko, Teoriya massovogo obsluzhivaniya, Vyssh. shkola, M., 1982 | Zbl
[3] R. Serfozo, Introduction to Stochastic Networks, Springer Verlag, New York, 1999 | MR | Zbl