Calculation of cohesiveness probability for recursively defined random networks
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 60-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

For recursively defined random networks in this paper recursive and asymptotic formulas of a calculation of cohesiveness probability are constructed. A comparison with known algorithms shows that in suggested algorithms it is not necessary to find maximal systems of frames. That accelerates calculations significantly. Numerical experiments which confirm an operation speed of suggested algorithms and an accuracy of assumed asymptotic formulas has made.
@article{DVMG_2010_10_1_a6,
     author = {A. S. Losev and G. Sh. Tsitsiashvili},
     title = {Calculation of cohesiveness probability for recursively defined random networks},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {60--65},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a6/}
}
TY  - JOUR
AU  - A. S. Losev
AU  - G. Sh. Tsitsiashvili
TI  - Calculation of cohesiveness probability for recursively defined random networks
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 60
EP  - 65
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a6/
LA  - ru
ID  - DVMG_2010_10_1_a6
ER  - 
%0 Journal Article
%A A. S. Losev
%A G. Sh. Tsitsiashvili
%T Calculation of cohesiveness probability for recursively defined random networks
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 60-65
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a6/
%G ru
%F DVMG_2010_10_1_a6
A. S. Losev; G. Sh. Tsitsiashvili. Calculation of cohesiveness probability for recursively defined random networks. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 60-65. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a6/

[1] R. E. Barlow, F. Proschan, Mathematical Theory of Reliability, Wiley, London and New York, 1965 | MR | Zbl

[2] I. A. Ushakov i dr., Nadezhnost tekhnicheskikh sistem, Spravochnik, Radio i svyaz, M., 1985

[3] E. D. Solozhentsev, “Osobennosti logiko-veroyatnostnoi teorii riska s gruppami nesovmestnykh sobytii”, Avtomatika i telemekhanika, 2003, no. 7, 187–203 | MR | Zbl

[4] I. A. Ryabinin, Nadezhnost i bezopasnost strukturno-slozhnykh sistem, Izd-vo S.-Peterb. un-ta, SPb., 2007

[5] C. Tanguy, “Exact solutions for the two-terminal Reliability of recursive structures: a few directions.”, MMR 2009 – Mathematical methods in reliability, Moscow, 2009, 220–224

[6] L. Cui, X. Zhao, “Recursive Equations of Reliability for Linear Consecutive-k-out-of-n: F Systems with Sparse d.”, MMR 2009 – Mathematical methods in reliability, Moscow, 2009, 45

[7] M. O. Ball, C. J. Colbourn, J. S. Provan, “Network reliability”, In Network Models, Handbook of Operations Research and Management Science, 7, North-Holland, Amsterdam, 1995, 673–762 | DOI | MR | Zbl

[8] V. P. Polesskii, “Otsenki veroyatnosti svyaznosti sluchainogo grafa”, Problemy peredachi informatsii, 26:1 (1990), 90–98 | MR | Zbl

[9] V. P. Polesskii, “Nizhnie otsenki veroyatnosti svyaznosti dlya nekotorykh klassov sluchainykh grafov”, Problemy peredachi informatsii, 29:2 (1993), 85–95 | MR | Zbl

[10] V. P. Polesskii, “Nizhnie otsenki veroyatnosti svyaznosti v klassakh sluchainykh grafov, porozhdennykh dvusvyaznymi grafami s zadannym bazovym spektrom”, Problemy peredachi informatsii, 28:2 (1992), 86–95 | MR | Zbl