Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2010_10_1_a5, author = {A. E. Kovtanyuk and I. V. Prokhorov}, title = {Boundary-value problem for the polarized-radiation transfer equation in layered medium}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {50--59}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a5/} }
TY - JOUR AU - A. E. Kovtanyuk AU - I. V. Prokhorov TI - Boundary-value problem for the polarized-radiation transfer equation in layered medium JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2010 SP - 50 EP - 59 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a5/ LA - ru ID - DVMG_2010_10_1_a5 ER -
%0 Journal Article %A A. E. Kovtanyuk %A I. V. Prokhorov %T Boundary-value problem for the polarized-radiation transfer equation in layered medium %J Dalʹnevostočnyj matematičeskij žurnal %D 2010 %P 50-59 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a5/ %G ru %F DVMG_2010_10_1_a5
A. E. Kovtanyuk; I. V. Prokhorov. Boundary-value problem for the polarized-radiation transfer equation in layered medium. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 50-59. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a5/
[1] G. I. Marchuk, G. A. Mikhailov, M. A. Nazarliev i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl
[2] T. A. Germogenova, N. V. Konovalov, M. G. Kuzmina, “Osnovy matematicheskoi teorii perenosa polyarizovannogo izlucheniya (strogie rezultaty)”, Printsip invariantnosti i ego prilozheniya, Trudy Vsesoyuznogo simpoziuma (Byurakan, 1981), Izd-vo An ArmSSR, Erevan, 1989, 271–284
[3] G. A. Mikhailov, S. A. Ukhinov, A. S. Chimaeva, “Dispersiya standartnoi vektornoi otsenki metoda Monte-Karlo v teorii perenosa polyarizovannogo izlucheniya”, Zhurnal vychislitelnoi matematiki i mat. fiziki, 46:11 (2006), 2099–2113 | MR
[4] T. A. Sushkevich, Matematicheskie modeli perenosa izlucheniya, BINOM. Laboratoriya znanii, M., 2006
[5] A. V. Latyshev, “Vektornaya kraevaya zadacha Rimana-Gilberta v granichnykh zadachakh rasseyaniya polyarizovannogo izlucheniya”, Zhurnal vychislitelnoi matematiki i mat. fiziki, 35:7 (1995), 1108–1127 | MR | Zbl
[6] A. E. Kovtanyuk, I. V. Prokhorov, “Tomography problem for the polarized-radiation transfer equation”, J. Inverse and Ill-Posed Problems, 14:6 (2006), 1–12 | DOI | MR
[7] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, 1961, 3–158 | MR
[8] T. A. Germogenova, Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl
[9] D. S. Anikonov, A. E. Kovtanyuk, and I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht – Boston, 2002, viii+208 pp. | MR
[10] G. V. Rozenberg, “Vektor-parametr Stoksa”, Uspekhi fiz. nauk, 56:1 (1955), 77–109 | DOI
[11] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, v. 1, 2, Mir, M., 1981
[12] L. A. Apresyan, Yu. A. Kravtsov, Teoriya perenosa izlucheniya, Nauka, M., 1983
[13] V. S. Potapov, “Metod resheniya uravneniya teorii perenosa dlya opticheski tolstogo sloya s otrazhayuschimi granitsami”, Teoreticheskaya i matematicheskaya fizika, 100:2 (1994), 287–302 | MR | Zbl
[14] I. V. Prokhorov, “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izvestiya RAN. Seriya matematicheskaya, 67:6 (2003), 169–192 | DOI | MR | Zbl
[15] I. V. Prokhorov, I. P. Yarovenko, and T. V. Krasnikova, “An extremum problem for the radiation transfer equation”, Journal of Inverse and Ill-Posed Problems, 13:4 (2005), 365–382 | DOI | MR | Zbl
[16] M. Born, E. Wolf, Principles of Optics, Pergamon, Oxford, 1968