Boundary-value problem for the polarized-radiation transfer equation in layered medium
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 50-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary-value problem for polarized-radiation transfer equation in layered medium with Fresnel matching conditions at the boundaries of the medium partition is examined. The theorems of solvability of the boundary-value problem are proved, the continuity properties for its solution are examined.
@article{DVMG_2010_10_1_a5,
     author = {A. E. Kovtanyuk and I. V. Prokhorov},
     title = {Boundary-value problem for the polarized-radiation transfer equation in layered medium},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {50--59},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a5/}
}
TY  - JOUR
AU  - A. E. Kovtanyuk
AU  - I. V. Prokhorov
TI  - Boundary-value problem for the polarized-radiation transfer equation in layered medium
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 50
EP  - 59
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a5/
LA  - ru
ID  - DVMG_2010_10_1_a5
ER  - 
%0 Journal Article
%A A. E. Kovtanyuk
%A I. V. Prokhorov
%T Boundary-value problem for the polarized-radiation transfer equation in layered medium
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 50-59
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a5/
%G ru
%F DVMG_2010_10_1_a5
A. E. Kovtanyuk; I. V. Prokhorov. Boundary-value problem for the polarized-radiation transfer equation in layered medium. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 50-59. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a5/

[1] G. I. Marchuk, G. A. Mikhailov, M. A. Nazarliev i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl

[2] T. A. Germogenova, N. V. Konovalov, M. G. Kuzmina, “Osnovy matematicheskoi teorii perenosa polyarizovannogo izlucheniya (strogie rezultaty)”, Printsip invariantnosti i ego prilozheniya, Trudy Vsesoyuznogo simpoziuma (Byurakan, 1981), Izd-vo An ArmSSR, Erevan, 1989, 271–284

[3] G. A. Mikhailov, S. A. Ukhinov, A. S. Chimaeva, “Dispersiya standartnoi vektornoi otsenki metoda Monte-Karlo v teorii perenosa polyarizovannogo izlucheniya”, Zhurnal vychislitelnoi matematiki i mat. fiziki, 46:11 (2006), 2099–2113 | MR

[4] T. A. Sushkevich, Matematicheskie modeli perenosa izlucheniya, BINOM. Laboratoriya znanii, M., 2006

[5] A. V. Latyshev, “Vektornaya kraevaya zadacha Rimana-Gilberta v granichnykh zadachakh rasseyaniya polyarizovannogo izlucheniya”, Zhurnal vychislitelnoi matematiki i mat. fiziki, 35:7 (1995), 1108–1127 | MR | Zbl

[6] A. E. Kovtanyuk, I. V. Prokhorov, “Tomography problem for the polarized-radiation transfer equation”, J. Inverse and Ill-Posed Problems, 14:6 (2006), 1–12 | DOI | MR

[7] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, 1961, 3–158 | MR

[8] T. A. Germogenova, Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[9] D. S. Anikonov, A. E. Kovtanyuk, and I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht – Boston, 2002, viii+208 pp. | MR

[10] G. V. Rozenberg, “Vektor-parametr Stoksa”, Uspekhi fiz. nauk, 56:1 (1955), 77–109 | DOI

[11] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, v. 1, 2, Mir, M., 1981

[12] L. A. Apresyan, Yu. A. Kravtsov, Teoriya perenosa izlucheniya, Nauka, M., 1983

[13] V. S. Potapov, “Metod resheniya uravneniya teorii perenosa dlya opticheski tolstogo sloya s otrazhayuschimi granitsami”, Teoreticheskaya i matematicheskaya fizika, 100:2 (1994), 287–302 | MR | Zbl

[14] I. V. Prokhorov, “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izvestiya RAN. Seriya matematicheskaya, 67:6 (2003), 169–192 | DOI | MR | Zbl

[15] I. V. Prokhorov, I. P. Yarovenko, and T. V. Krasnikova, “An extremum problem for the radiation transfer equation”, Journal of Inverse and Ill-Posed Problems, 13:4 (2005), 365–382 | DOI | MR | Zbl

[16] M. Born, E. Wolf, Principles of Optics, Pergamon, Oxford, 1968