Optimal control problem for stationary equations of elastic waves diffraction
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 31-40
Voir la notice de l'article provenant de la source Math-Net.Ru
One consider the optimal control problem for stationary equations
of elastic waves diffraction on three-dimensional inclusion in
unbounded homogeneous medium. The problem is to minimize
$L^2$-deviation of pressure field in inclusion from the given. The
control is the field source in the exterior medium. The
solvability of problem is proved. The algorithm of is proposed.
@article{DVMG_2010_10_1_a3,
author = {L. V. Illarionova},
title = {Optimal control problem for stationary equations of elastic waves diffraction},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {31--40},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a3/}
}
TY - JOUR AU - L. V. Illarionova TI - Optimal control problem for stationary equations of elastic waves diffraction JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2010 SP - 31 EP - 40 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a3/ LA - ru ID - DVMG_2010_10_1_a3 ER -
L. V. Illarionova. Optimal control problem for stationary equations of elastic waves diffraction. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 31-40. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a3/