Asymptotic formulas for a calculation of a lattice reliability
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 86-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

A calculation of a probability that there is a working way between lattice nodes has interesting physical applications. For a lattice with two columns of cells these calculations are suggested by Ch. Tanguy and are based on transform matrices. But when a number of columns increases a transform matrix dimension increases significantly also and it is difficult to use this method. So in this paper we suggest to solve the problem in cases when lattice arcs are low or high reliable. For this aim asymptotic formulas which estimate connection probabilities by the arc reliability and by integer parameters of the lattice are suggested. Algorithms to find parameters of suggested asymptotic formulas are constructed. These algorithms are based on geometric componentries.
@article{DVMG_2010_10_1_a10,
     author = {G. Sh. Tsitsiashvili},
     title = {Asymptotic formulas for a calculation of a lattice reliability},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {86--90},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a10/}
}
TY  - JOUR
AU  - G. Sh. Tsitsiashvili
TI  - Asymptotic formulas for a calculation of a lattice reliability
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 86
EP  - 90
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a10/
LA  - ru
ID  - DVMG_2010_10_1_a10
ER  - 
%0 Journal Article
%A G. Sh. Tsitsiashvili
%T Asymptotic formulas for a calculation of a lattice reliability
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 86-90
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a10/
%G ru
%F DVMG_2010_10_1_a10
G. Sh. Tsitsiashvili. Asymptotic formulas for a calculation of a lattice reliability. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 86-90. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a10/

[1] R. E. Barlow, F. Proschan, Mathematical Theory of Reliability, Wiley, London and New York, 1965 | MR | Zbl

[2] I. A. Ushakov et al., Reliability of technical systems, Handbook, Radio and Communication, Moscow, 1985, 608 pp. (In Russian)

[3] C. Tanguy, “What is the probability of connecting two points?”, J. Phys. A: Math. Theor., 40 (2007), 14099–14116 | DOI | MR | Zbl

[4] C. Tanguy, “Asymptotic dependence of average failure rate and MTTF for a recursive meshed network architecture”, Reliability and risk analysis: theory and applications, 2(13), part 2 (2009), 45–54

[5] L. R. Ford, D. R. Fulkerson, Flows in networks, Princeton university press, Princeton, New Jersey, 1962 | MR | Zbl

[6] V. V. Belov, E. M. Vorobev, V. E. Shatalov, Teoriya grafov, Uchebnoe posobie dlya vtuzov, Vysshaya shkola, M., 1976 | Zbl