Two-phase feature of perfect plasticity model
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 9-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two phase continuum model of solid is proposed. The model takes into account relative motion of phases and includes perfect plasticity model in the limit case.
@article{DVMG_2010_10_1_a1,
     author = {M. A. Guzev},
     title = {Two-phase feature of perfect plasticity model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/}
}
TY  - JOUR
AU  - M. A. Guzev
TI  - Two-phase feature of perfect plasticity model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 9
EP  - 19
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/
LA  - ru
ID  - DVMG_2010_10_1_a1
ER  - 
%0 Journal Article
%A M. A. Guzev
%T Two-phase feature of perfect plasticity model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 9-19
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/
%G ru
%F DVMG_2010_10_1_a1
M. A. Guzev. Two-phase feature of perfect plasticity model. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/

[1] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998 | Zbl

[2] V. E. Panin, Yu. V. Grinyaev, V. I. Danilov i dr., Strukturnye urovni plasticheskoi deformatsii i razrusheniya, Nauka, Novosibirsk, 1990 | Zbl

[3] D. D. Ivlev, Teoriya idealnoi plastichnosti, Nauka, M., 1966 | MR | Zbl

[4] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990 | MR | Zbl

[5] V. P. Myasnikov, M. A. Guzev, “Geometricheskaya model defektnoi struktury uprugoplasticheskoi sploshnoi sredy”, PMTF, 40:2 (1999), 163–173 | MR | Zbl

[6] L. D. Landau, E. M.Lifshits, Gidrodinamika, Nauka, M., 1986 | MR

[7] I. Prigozhin, D. Kodepudi, Sovremennaya termodinamika, Mir, M., 2002

[8] A. I. Rusanov, “Termodinamicheskie osnovy mekhanokhimii”, Zh. obschei khimii, 70:3 (2000), 353–382

[9] A. I. Rusanov, “Teplovye effekty v mekhanokhimii”, Zh. obschei khimii, 72:3 (2002), 353–372