Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2010_10_1_a1, author = {M. A. Guzev}, title = {Two-phase feature of perfect plasticity model}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {9--19}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/} }
M. A. Guzev. Two-phase feature of perfect plasticity model. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/
[1] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998 | Zbl
[2] V. E. Panin, Yu. V. Grinyaev, V. I. Danilov i dr., Strukturnye urovni plasticheskoi deformatsii i razrusheniya, Nauka, Novosibirsk, 1990 | Zbl
[3] D. D. Ivlev, Teoriya idealnoi plastichnosti, Nauka, M., 1966 | MR | Zbl
[4] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990 | MR | Zbl
[5] V. P. Myasnikov, M. A. Guzev, “Geometricheskaya model defektnoi struktury uprugoplasticheskoi sploshnoi sredy”, PMTF, 40:2 (1999), 163–173 | MR | Zbl
[6] L. D. Landau, E. M.Lifshits, Gidrodinamika, Nauka, M., 1986 | MR
[7] I. Prigozhin, D. Kodepudi, Sovremennaya termodinamika, Mir, M., 2002
[8] A. I. Rusanov, “Termodinamicheskie osnovy mekhanokhimii”, Zh. obschei khimii, 70:3 (2000), 353–382
[9] A. I. Rusanov, “Teplovye effekty v mekhanokhimii”, Zh. obschei khimii, 72:3 (2002), 353–372