Two-phase feature of perfect plasticity model
Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 9-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two phase continuum model of solid is proposed. The model takes into account relative motion of phases and includes perfect plasticity model in the limit case.
@article{DVMG_2010_10_1_a1,
     author = {M. A. Guzev},
     title = {Two-phase feature of perfect plasticity model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {9--19},
     year = {2010},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/}
}
TY  - JOUR
AU  - M. A. Guzev
TI  - Two-phase feature of perfect plasticity model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2010
SP  - 9
EP  - 19
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/
LA  - ru
ID  - DVMG_2010_10_1_a1
ER  - 
%0 Journal Article
%A M. A. Guzev
%T Two-phase feature of perfect plasticity model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2010
%P 9-19
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/
%G ru
%F DVMG_2010_10_1_a1
M. A. Guzev. Two-phase feature of perfect plasticity model. Dalʹnevostočnyj matematičeskij žurnal, Tome 10 (2010) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/DVMG_2010_10_1_a1/

[1] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998 | Zbl

[2] V. E. Panin, Yu. V. Grinyaev, V. I. Danilov i dr., Strukturnye urovni plasticheskoi deformatsii i razrusheniya, Nauka, Novosibirsk, 1990 | Zbl

[3] D. D. Ivlev, Teoriya idealnoi plastichnosti, Nauka, M., 1966 | MR | Zbl

[4] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990 | MR | Zbl

[5] V. P. Myasnikov, M. A. Guzev, “Geometricheskaya model defektnoi struktury uprugoplasticheskoi sploshnoi sredy”, PMTF, 40:2 (1999), 163–173 | MR | Zbl

[6] L. D. Landau, E. M.Lifshits, Gidrodinamika, Nauka, M., 1986 | MR

[7] I. Prigozhin, D. Kodepudi, Sovremennaya termodinamika, Mir, M., 2002

[8] A. I. Rusanov, “Termodinamicheskie osnovy mekhanokhimii”, Zh. obschei khimii, 70:3 (2000), 353–382

[9] A. I. Rusanov, “Teplovye effekty v mekhanokhimii”, Zh. obschei khimii, 72:3 (2002), 353–372