Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2009_9_1_a9, author = {D. Yu. Logachev}, title = {Reduction of a problem of finiteness of {Tate-Shafarevich} group to a result of {Zagier} type}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {105--130}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a9/} }
TY - JOUR AU - D. Yu. Logachev TI - Reduction of a problem of finiteness of Tate-Shafarevich group to a result of Zagier type JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2009 SP - 105 EP - 130 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a9/ LA - en ID - DVMG_2009_9_1_a9 ER -
D. Yu. Logachev. Reduction of a problem of finiteness of Tate-Shafarevich group to a result of Zagier type. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 105-130. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a9/
[1] V. A. Kolyvagin, “Finiteness of $E(\mathbb Q)$ and Sh$(E,\mathbb Q)$ for a subclass of Weil curves”, Math. USSR Izvestiya, 32:3 (1989), 523–541 | DOI | MR | Zbl
[2] V. A. Kolyvagin, “Euler systems”, The Grothendieck Festschrift, 2, Birkhauser, Boston Basel Stuttgart, 1990, 435–483 | MR
[3] D. Logachev, Relations between conjectural eigenvalues of Hecke operators on submotives of Siegel varieties, arXiv: 0405442 | MR
[4] D. Logachev, Action of Hecke correspondences on subvarieties of Shimura varieties, arXiv: 0508204
[5] D. Logachev, “Action of Hecke correspondences on Heegner curves on a Siegel threefold”, J. of Algebra, 236:1 (2001), 307–348 | DOI | MR | Zbl
[6] Don Zagier, “Modular points, modular curves, modular surfaces and modular forms”, Workshop Bonn 1984 (Bonn, 1984), Lecture Notes in Math., 1111, Springer, Berlin, 1985, 225–248 | DOI | MR
[7] B. H. Gross, W. Kohnen, D. B. Zagier, “Heegner points and derivatives of $L$-series, II”, Math. Ann., 278, 1987 | DOI | MR | Zbl
[8] J. Nekovář, “Kolyvagin's method for Chow groups of Kuga – Sato varieties”, Inv. Math., 107, 1992, 99–125 | DOI | MR
[9] B. H. Gross, “Kolyvagin's work on modular elliptic curves”, $L$-functions and Arithmetic, Proceedings of the Durham Symposium (July, 1989), Cambridge Univ. Press, 1991, 235–256 | DOI | MR
[10] P. Deligne, “Travaux de Shimura”, Seminaire Bourbaki 1970/71, Exposé 389, Lect. Notes in Math., 244, 1971, 123–165 | DOI | MR | Zbl
[11] V. A. Kolyvagin, D. Yu. Logachev, “Finiteness of Shover totally real fields”, Math. USSR Izvestiya, 39:1 (1992), 829–853 | DOI | MR
[12] S. Bloch, L. Kato, “L-functions and Tamagava numbers of motives”, The Grothendieck Festschrift, 1, Birkhauser, Boston Basel Stuttgart, 1990, 333–400 | MR
[13] G. Faltings, Chai Ching-Li, Degeneration of abelian varieties, Springer, 1990 | MR | Zbl
[14] D. Blasius, J. D. Rogawski, “Zeta functions of Shimura varieties”, Motives. Proc. of Symp. in Pure Math., no. 2, 1994, 525–571 | DOI | MR | Zbl
[15] A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Mathematical Surveys and Monographs, 67, Second edition, American Mathematical Society, Providence, RI, 2000 | DOI | MR | Zbl