Condenser capacity and symmetrization in the extremal decomposition problems
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 84-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Capacity approach and Steiner symmetrization are applied to the solution of two extremal decomposition problems on the Riemann sphere. First, the inequality between generalized reduced moduli with respect to the inner points and the reduced moduli of the strips and half–strips are established. The second problem comes under the heading of extremal decompositions with the free poles on the concentric circles. The results obtained are complementary to some classical and recent theorems in various ways.
@article{DVMG_2009_9_1_a7,
     author = {V. N. Dubinin},
     title = {Condenser capacity and symmetrization in the extremal decomposition problems},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {84--93},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a7/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Condenser capacity and symmetrization in the extremal decomposition problems
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 84
EP  - 93
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a7/
LA  - ru
ID  - DVMG_2009_9_1_a7
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Condenser capacity and symmetrization in the extremal decomposition problems
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 84-93
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a7/
%G ru
%F DVMG_2009_9_1_a7
V. N. Dubinin. Condenser capacity and symmetrization in the extremal decomposition problems. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 84-93. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a7/

[1] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii II”, Algebra i analiz, 9:5 (1997), 1–50 | MR | Zbl

[2] G. V. Kuzmina, “Ob odnom ekstremalno-metricheskom podkhode k zadacham ob ekstremalnom razbienii”, Zap. nauchn. semin. POMI, 337, 2006, 191–211 | MR | Zbl

[3] G. V. Kuzmina, “O simmetrichnykh konfiguratsiyakh v zadachakh ob ekstremalnom razbienii”, Zap. nauchn. semin. POMI, 350, 2007, 160–172 | MR

[4] E. G. Emelyanov, “O kvadratichnykh differentsialakh v mnogosvyaznykh oblastyakh, yavlyayuschikhsya polnymi kvadratami II”, Zap. nauchn. semin. POMI, 350, 2007, 40–51 | MR

[5] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, 49:1 (1994), 3–76 | MR | Zbl

[6] A. K. Bakhtin, “Kusochno razdelyayuschee preobrazovanie i ekstremalnye zadachi so svobodnymi polyusami na luchakh”, Dopov. NAN Ukraini, 12, 2004, 7–13 | MR | Zbl

[7] A. K. Bakhtin, G. P. Bakhtina, Yu. B. Zelinskii, Topologo-algebraicheskie struktury i geometricheskie metody v kompleksnom analize, Institut matematiki NAN Ukrainy, Kiev, 2008

[8] E. G. Emelyanov, “O svyazi dvukh zadach ob ekstremalnom razbienii”, Zap. nauchn. semin. LOMI, 160, 1987, 91–98 | MR

[9] V. N. Dubinin, “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Zap. nauchn. semin. POMI, 237, 1997, 56–73 | MR | Zbl

[10] V. N. Dubinin, “Obobschennye kondensatory i asimptotika ikh emkostei pri vyrozhdenii nekotorykh plastin”, Zap. nauchn. semin. POMI, 302, 2003, 38–51 | MR

[11] P. Duren, M. Schiffer, “Robin functions and energy functionals of multiply connected domains”, Pacific J.Math., 148 (1991), 251–273 | DOI | MR | Zbl

[12] P. Duren, M. Schiffer, “Robin functions and distortion of capacity under conformal mapping”, Complex Variables, 21 (1993), 189–196 | DOI | MR | Zbl

[13] G. V. Kuzmina, “Ob ekstremalnykh svoistvakh kvadratichnykh differentsialov s polosoobraznymi oblastyami v strukture traektorii”, Zap. nauchn. semin. LOMI, 154, 1986, 110–129 | MR | Zbl

[14] E. G. Emelyanov, “K zadacham ob ekstremalnom razbienii”, Zap. nauchn. semin. LOMI, 154, 1986, 76–89 | MR | Zbl

[15] A. Yu. Solynin, “Reshenie odnoi izoperimetricheskoi zadachi Polia – Sege”, Zap. nauchn. semin. LOMI, 168, 1988, 140–153 | Zbl

[16] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lect. Notes in Math. 1788, Springer, 2002 | DOI | MR | Zbl

[17] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Zap. nauchn. semin. POMI, 254, 1998, 76–94 | MR