Perestroika of particle system potential at external mechanical action
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 74-83
Cet article a éte moissonné depuis la source Math-Net.Ru
One-dimensional system of particles is considered. It is shown that an external action changes type and a number of the critical points of particle system potential.
@article{DVMG_2009_9_1_a6,
author = {M. A. Guzev},
title = {Perestroika of particle system potential at external mechanical action},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {74--83},
year = {2009},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a6/}
}
M. A. Guzev. Perestroika of particle system potential at external mechanical action. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 74-83. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a6/
[1] A. M. Krivtsov, N. V. Krivtsova, “Metod chastits i ego ispolzovanie v mekhanike deformiruemogo tverdogo tela”, Dalnevostochnyi matematicheskii zhurnal, 3:2 (2002), 254–276, Dalnauka, Vladivostok
[2] M. A. Guzev, Yu. G. Izrailskii, M. A. Shepelov, “Makroskopicheskie kharakteristiki odnomernoi tochno reshaemoi molekulyarnoi modeli na razlichnykh masshtabakh”, Fiz. mezomekh., 5:9 (2006), 53–57
[3] M. A. Guzev, A. A. Dmitriev, N. A. Permyakov, “Struktura ostatochnogo napryazheniya v modeli molekulyarnoi dinamiki”, Dalnevostochnyi matematicheskii zhurnal, 8:2 (2008), 152–163 | MR
[4] N. N. Bautin, E. A. Leontovich, Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990 | MR | Zbl