Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2009_9_1_a5, author = {V. V. Golovchanskii and M. N. Smotrov}, title = {Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ by level~$N$}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {48--73}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a5/} }
TY - JOUR AU - V. V. Golovchanskii AU - M. N. Smotrov TI - Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ by level~$N$ JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2009 SP - 48 EP - 73 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a5/ LA - ru ID - DVMG_2009_9_1_a5 ER -
%0 Journal Article %A V. V. Golovchanskii %A M. N. Smotrov %T Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ by level~$N$ %J Dalʹnevostočnyj matematičeskij žurnal %D 2009 %P 48-73 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a5/ %G ru %F DVMG_2009_9_1_a5
V. V. Golovchanskii; M. N. Smotrov. Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ by level~$N$. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 48-73. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a5/
[1] V. V. Golovchanskii, M. N. Smotrov, “Yavnaya formula chisla klassov primitivnykh giperbolicheskikh elementov gruppy $\Gamma_0(N)$”, Matem. sb., 199:7 (2008), 63–84 | DOI | MR
[2] N. V. Kuznetsov, “Raspredelenie norm primitivnykh giperbolicheskikh klassov modulyarnoi gruppy i asimptoticheskie formuly dlya sobstvennykh znachenii operatora Laplasa – Beltrami na fundamentalnoi oblasti modulyarnoi gruppy”, DAN, 242:1 (1978), 40–43 | MR | Zbl
[3] M. Peter, “The correlation between multiplicities of closed geodesics on the modular surface”, Comm. Math. Phys., 225 (2002), 171–189 | DOI | MR | Zbl
[4] V. Lukianov, A central limit theorem for congruence subgroups of the modular group, Ph. D. Thesis, Tel Aviv Univ., 2005
[5] T. Arakawa, S. Koyama, M. Nakasuji, “Arithmetic foms of Selberg zeta functioms with applications to prime geodesic theorem”, Proc. Japan Acad., 78:A (2002), 120–125 | DOI | MR | Zbl
[6] Y. Hashimoto, “Arithmetic expressions of Selberg's zeta functions for congruence subgroups”, J. Number Theory, 122 (2007), 324–335 | DOI | MR | Zbl
[7] W. Luo, Z. Rudnick, P. Sarnak, “On Selberg's eigenvalue conjecture”, Geom. Funct. Anal., 5:2 (1995), 387–401 | DOI | MR | Zbl