Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ by level~$N$
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 48-73
Voir la notice de l'article provenant de la source Math-Net.Ru
An arithmetical forms of Selberg's trace formula and Selberg's zeta-function for the congruence subgroup $\Gamma_0(N)$, explicit expression for the number of classes of primitive hyperbolic elements in the congruence subgroup level $N$ in terms of the number of classes of primitive elements in the congruence subgroup level $N_1=N/P^i$, $(N,N_1)=1$ and sharp upper bound of the number classes by level $N$ are obtained.
@article{DVMG_2009_9_1_a5,
author = {V. V. Golovchanskii and M. N. Smotrov},
title = {Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ by level~$N$},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {48--73},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a5/}
}
TY - JOUR AU - V. V. Golovchanskii AU - M. N. Smotrov TI - Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ by level~$N$ JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2009 SP - 48 EP - 73 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a5/ LA - ru ID - DVMG_2009_9_1_a5 ER -
%0 Journal Article %A V. V. Golovchanskii %A M. N. Smotrov %T Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ by level~$N$ %J Dalʹnevostočnyj matematičeskij žurnal %D 2009 %P 48-73 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a5/ %G ru %F DVMG_2009_9_1_a5
V. V. Golovchanskii; M. N. Smotrov. Multiplicative characteristics of function for the number of classes of primitive hyperbolic elements in the group $\Gamma_0(N)$ by level~$N$. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 48-73. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a5/