On a characteristic properties of modified Lagrangian functional in a problem of elasticity with a given friction
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 38-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The modified Lagrangian functional was investigated for Semicoercive Quasi-Variational Signorini Inequality. It was shown that the sets of saddle points of classical and modified Lagrangian functionals are the same.
@article{DVMG_2009_9_1_a4,
     author = {E. M. Vikhtenko and R. V. Namm},
     title = {On a characteristic properties of modified {Lagrangian} functional in a problem of elasticity with a given friction},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {38--47},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a4/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - R. V. Namm
TI  - On a characteristic properties of modified Lagrangian functional in a problem of elasticity with a given friction
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 38
EP  - 47
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a4/
LA  - ru
ID  - DVMG_2009_9_1_a4
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A R. V. Namm
%T On a characteristic properties of modified Lagrangian functional in a problem of elasticity with a given friction
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 38-47
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a4/
%G ru
%F DVMG_2009_9_1_a4
E. M. Vikhtenko; R. V. Namm. On a characteristic properties of modified Lagrangian functional in a problem of elasticity with a given friction. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a4/

[1] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986, 270 pp. | MR

[2] N. Kikuchi, T. Oden, Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988, 495 pp. | MR | Zbl

[3] R. Glovinski, Zh. L. Lions, R. Tremoler, Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 576 Bibitem{Glowinski} pp. | MR

[4] E. M. Vikhtenko, R. V. Namm, “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 47:12 (2007), 2023–2036 | MR