About diffusion approximation for the radiation transfer equation with account of Сompton scattering
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 209-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with diffusion approximation for the radiation transfer equation which takes into account Сompton scattering on electrons. Considered approximation is degenerate parabolic equation. The choice of initial conditions is discussed.
@article{DVMG_2009_9_1_a20,
     author = {I. P. Yarovenko},
     title = {About diffusion approximation for the radiation transfer equation with account of {{\CYRS}ompton} scattering},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a20/}
}
TY  - JOUR
AU  - I. P. Yarovenko
TI  - About diffusion approximation for the radiation transfer equation with account of Сompton scattering
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 209
EP  - 218
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a20/
LA  - ru
ID  - DVMG_2009_9_1_a20
ER  - 
%0 Journal Article
%A I. P. Yarovenko
%T About diffusion approximation for the radiation transfer equation with account of Сompton scattering
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 209-218
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a20/
%G ru
%F DVMG_2009_9_1_a20
I. P. Yarovenko. About diffusion approximation for the radiation transfer equation with account of Сompton scattering. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 209-218. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a20/

[1] O. I. Leipunskii, B. V. Novozhilov, V. I. Sakharov, Rasprostranenie gamma-kvantov v veschestve, GIFML, M., 1960

[2] V. V. Smelov, Lektsii po teorii perenosa neitronov, Atomizdat, M., 1976. | MR

[3] A. Ishimaru, Wave Propagation and Scattering in Random Media, 1, Academic Press, New York, 1978 | MR

[4] V. M. Podgaetskii, S. V. Selischev, S. A. Tereschenko, “Modeli rasprostraneniya izlucheniya dlya sistem meditsinskoi lazernoi tomografii”, Meditsinskaya tekhnika, 1999, no. 6, 3–11

[5] V. V. Tuchin, “Issledovanie biotkanei metodami svetorasseyaniya”, Uspekhi Fizicheskikh nauk, 167:5 (1997), 517–539 | DOI

[6] S. R. Arridge, “Optical tomography in medical imaging”, Inverse Problems, 15:2 (1999), R41–R93 | DOI | MR | Zbl

[7] K. Ren, G. S. Abdoulaev, G. Bal, A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain”, Optics Letters, 29:6 (2004), 578–580 | DOI

[8] K. Ren, G. Bal, A. Hielscher, “Frequency Domain Optical Tomography Based on the Equation of Radiative Transfer”, SIAM Journal on Scientific Computing, 28:4 (2006), 1463–1489 | DOI | MR | Zbl

[9] U. Fano, L. Spenser, M. Berger, Perenos gamma izlucheniya, Gosatomizdat, M., 1963

[10] D. S. Anikonov, D. S. Konovalova, “Komptonovskii effekt v teorii perenosa izlucheniya”, Doklady AN, 398:4 (2004), 462–465 | MR | Zbl

[11] D. S. Anikonov, D. S. Konovalova, “Kraevaya zadacha dlya uravneniya perenosa s chisto komptonovskim rasseyaniem”, Sibirskii matematicheskii zhurnal, 46:1 (2005), 3–16 | MR | Zbl

[12] V. G. Nazarov, N. V. Solnyshko, I. P. Yarovenko, “Chislennye eksperimenty v teorii perenosa izlucheniya s uchetom komptonovskogo rasseyaniya”, SibZhIM, 8:2 (2005), 135–143 | MR

[13] S. M. Ermakov, G. A. Mikhailov, Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[14] G. I. Marchuk, V. I. Lebedev, Chislennye metody po teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[15] G. A. Mikhailov, Vesovye metody Monte-Karlo, Izd. SORAN, Novosibirsk, 2000 | MR

[16] J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer and R. J. Howerton, “Atomic Form Factors, Incoherent Scattering Functions, and Photon Scattering Cross Sections”, J. Phys. Chem. Ref., 4 (1975), 471–538 ; 6 (1977), 615–616 | DOI | DOI

[17] D. S. Anikonov, V. G. Nazarov, and I. V. Prokhorov, Poorly Visible Media in X-Ray Tomography, VSP, Utrecht – Boston, 2002, viii+294 pp.

[18] J. H. Hubbell and S. M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 Kev to 20 Mev for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, NISTIR 5632, 1995

[19] R. E. Marshak, “Note on the spherical harmonic method as applied to the Milne problem for a sphere”, Phys. Rev., 71 (1947), 443–446 | DOI | MR | Zbl

[20] T. A. Germogenova, O. V. Nikolaeva, “Boundary condition for asymptotic approximations in two-region transport problem”, Proc. Mathematics and Computations, Reactor Physics and Environmental Analysis in Nuclear Applications, Madrid, 1999, 1977–1986

[21] A. E. Kovtanyuk, E. V. Maltseva, “Vliyanie razlichnykh faktorov na tochnost diffuzionnogo priblizheniya uravneniya perenosa v ploskoparallelnom sluchae”, SibZhIM, 6:1 (2003), 40–50 | MR | Zbl