Regularity of solution of a boundary value problem for Maxwell's equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 24-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate regularity property of solution to a boundary value problem for Maxwell's equations under boundary conditions of the third kind.
@article{DVMG_2009_9_1_a2,
     author = {R. V. Brizitskii and A. S. Savenkova},
     title = {Regularity of solution of a boundary value problem for {Maxwell's} equations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {24--28},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a2/}
}
TY  - JOUR
AU  - R. V. Brizitskii
AU  - A. S. Savenkova
TI  - Regularity of solution of a boundary value problem for Maxwell's equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 24
EP  - 28
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a2/
LA  - ru
ID  - DVMG_2009_9_1_a2
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%A A. S. Savenkova
%T Regularity of solution of a boundary value problem for Maxwell's equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 24-28
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a2/
%G ru
%F DVMG_2009_9_1_a2
R. V. Brizitskii; A. S. Savenkova. Regularity of solution of a boundary value problem for Maxwell's equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 24-28. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a2/

[1] F. Cakoni, D. Colton, P. Monk, “The electromagnetic inverse scattering problem for partially coated lipschitz domains”, Proceeding of the Edinburg Mathematical Society, 134 (2004), 661–682 | DOI | MR | Zbl

[2] F. Cakoni, H. Haddar, “Identification of partially coated anisotropic buried objects using electromagnetic Cauchy data”, J. Integral Equations Appl., 134:3 (2007), 359–389 | DOI | MR

[3] F. Caconi, D. Colton, “A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media”, Proceeding of the Edinburg Mathematical Society, 46 (2003), 293–314 | DOI | MR

[4] M. Costabel, “A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains”, Math. Meth. Appl. Sci., 12 (1990), 365–368 | DOI | MR | Zbl

[5] D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd, Springer Verlag, 1998 | MR | Zbl

[6] R. Leis, Initial boundary value problems in mathematical physics, John Wiley Sons, 1996 | MR

[7] A. Alonso and A. Valli, “Some remarks on the characterization of the space of tangential traces of $H({\rm rot}; \Omega)$ and the construction of the extension operator”, Manuscr. Math., 89 (1996), 159–178 | DOI | MR | Zbl

[8] A. Buffa, M. Costabel, D. Sheen, “On traces for $H(curl,\Omega)$ in Lipschitz domains”, J. Math. Anal. Appl., 276:2 (2002), 845–876 | DOI | MR

[9] G. V. Alekseev, D. A. Tereshko, Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[10] A. Valli, Orthogonal decompositions of $L^2(\Omega)^3$, Preprint UTM 493, Department of Mathematics. University of Toronto, Galamen, 1995