Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2009_9_1_a2, author = {R. V. Brizitskii and A. S. Savenkova}, title = {Regularity of solution of a boundary value problem for {Maxwell's} equations}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {24--28}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a2/} }
TY - JOUR AU - R. V. Brizitskii AU - A. S. Savenkova TI - Regularity of solution of a boundary value problem for Maxwell's equations JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2009 SP - 24 EP - 28 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a2/ LA - ru ID - DVMG_2009_9_1_a2 ER -
R. V. Brizitskii; A. S. Savenkova. Regularity of solution of a boundary value problem for Maxwell's equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 24-28. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a2/
[1] F. Cakoni, D. Colton, P. Monk, “The electromagnetic inverse scattering problem for partially coated lipschitz domains”, Proceeding of the Edinburg Mathematical Society, 134 (2004), 661–682 | DOI | MR | Zbl
[2] F. Cakoni, H. Haddar, “Identification of partially coated anisotropic buried objects using electromagnetic Cauchy data”, J. Integral Equations Appl., 134:3 (2007), 359–389 | DOI | MR
[3] F. Caconi, D. Colton, “A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media”, Proceeding of the Edinburg Mathematical Society, 46 (2003), 293–314 | DOI | MR
[4] M. Costabel, “A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains”, Math. Meth. Appl. Sci., 12 (1990), 365–368 | DOI | MR | Zbl
[5] D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd, Springer Verlag, 1998 | MR | Zbl
[6] R. Leis, Initial boundary value problems in mathematical physics, John Wiley Sons, 1996 | MR
[7] A. Alonso and A. Valli, “Some remarks on the characterization of the space of tangential traces of $H({\rm rot}; \Omega)$ and the construction of the extension operator”, Manuscr. Math., 89 (1996), 159–178 | DOI | MR | Zbl
[8] A. Buffa, M. Costabel, D. Sheen, “On traces for $H(curl,\Omega)$ in Lipschitz domains”, J. Math. Anal. Appl., 276:2 (2002), 845–876 | DOI | MR
[9] G. V. Alekseev, D. A. Tereshko, Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008
[10] A. Valli, Orthogonal decompositions of $L^2(\Omega)^3$, Preprint UTM 493, Department of Mathematics. University of Toronto, Galamen, 1995