The stable synthesis of optimal control in the extremum problem for elliptic equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 204-208
Cet article a éte moissonné depuis la source Math-Net.Ru
The optimal control problem for the elliptic equation is considered. The solutions of the elliptic equation are the unstable critical points of corresponding evolution system. The construction of the feedback control provided the stability of optimal state is suggested.
@article{DVMG_2009_9_1_a19,
author = {A. Yu. Chebotarev},
title = {The stable synthesis of optimal control in the extremum problem for elliptic equation},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {204--208},
year = {2009},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a19/}
}
TY - JOUR AU - A. Yu. Chebotarev TI - The stable synthesis of optimal control in the extremum problem for elliptic equation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2009 SP - 204 EP - 208 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a19/ LA - ru ID - DVMG_2009_9_1_a19 ER -
A. Yu. Chebotarev. The stable synthesis of optimal control in the extremum problem for elliptic equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 204-208. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a19/
[1] Zh.-L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR
[2] Zh.-L. Lions, “Nekotorye voprosy optimalnogo upravleniya raspredelennymi sistemami”, UMN, 40:4(244) (1985), 55–68 | MR | Zbl
[3] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 350 pp.
[4] A. V. Fursikov, “Stabiliziruemost kvazilineinogo parabolicheskogo uravneniya s pomoschyu granichnogo upravleniya s obratnoi svyazyu”, Matematicheskii sbornik, 192:4 (2001), 115–160 | DOI | MR | Zbl