Probability and deterministic problems of minimal interval
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 190-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of a minimal interval between neighbor points appears in different applications: in the solid state physics, in the surface physics, in the mathematical economics, in the operations research and etc. From a mathematical point of view these problems are sufficiently substandard and demand a creation of special approaches. In this paper as probability so deterministic formulations of this problem are considered. Original algorithms of the problem solution and asymptotic formulas are constructed.
@article{DVMG_2009_9_1_a17,
     author = {G. Sh. Tsitsiashvili},
     title = {Probability and deterministic problems of minimal interval},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {190--193},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a17/}
}
TY  - JOUR
AU  - G. Sh. Tsitsiashvili
TI  - Probability and deterministic problems of minimal interval
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 190
EP  - 193
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a17/
LA  - ru
ID  - DVMG_2009_9_1_a17
ER  - 
%0 Journal Article
%A G. Sh. Tsitsiashvili
%T Probability and deterministic problems of minimal interval
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 190-193
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a17/
%G ru
%F DVMG_2009_9_1_a17
G. Sh. Tsitsiashvili. Probability and deterministic problems of minimal interval. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 190-193. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a17/

[1] S. Karlin, Osnovy teorii sluchainykh protsessov, Mir, M., 1971 | MR | Zbl