On the convergence of polynomial Fredholm series
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 131-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note, we study the infinite system of Fredholm series of polynomials in $\lambda$, formed, in the classical way, for a kernel on $\mathbb{R}^2$ of the form $\boldsymbol{H}(s,t)-\lambda\boldsymbol{S}(s,t)$, where $\lambda$ is a complex parameter. We establish a convergence of these series in the complex plane with respect to sup-norms of various spaces of continuous functions. The convergence results apply to solving a Fredholm integral equation with a kernel that is linear with respect to parameter.
@article{DVMG_2009_9_1_a10,
     author = {I. M. Novitskii},
     title = {On the convergence of polynomial {Fredholm} series},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {131--139},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a10/}
}
TY  - JOUR
AU  - I. M. Novitskii
TI  - On the convergence of polynomial Fredholm series
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 131
EP  - 139
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a10/
LA  - ru
ID  - DVMG_2009_9_1_a10
ER  - 
%0 Journal Article
%A I. M. Novitskii
%T On the convergence of polynomial Fredholm series
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 131-139
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a10/
%G ru
%F DVMG_2009_9_1_a10
I. M. Novitskii. On the convergence of polynomial Fredholm series. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 131-139. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a10/

[1] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR

[2] I. M. Novitskiĭ, “Integral representations of linear operators by smooth Carleman kernels of Mercer type”, Proc. London Math. Soc. (3), 68, 1994, 161–177 | DOI | MR | Zbl

[3] I. M. Novitskiĭ, “Unitary equivalence to integral operators and an application”, Int. J. Pure Appl. Math., 50:2 (2009), 295–300 | MR | Zbl

[4] I. M. Novitskii, “O minorakh Fredgolma dlya vpolne nepreryvnykh operatorov”, Dalnevostochnyi matematicheskii sbornik, 7 (1999), 103–122, Dalnauka, Vladivostok

[5] U. V. Lovitt, Lineinye integralnye uravneniya, GITTL, M., 1957, 266 pp.

[6] M. Markus, Ch. Mink, Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972, 232 pp. | MR

[7] I. M. Novitskii, “Formuly Fredgolma dlya yader, lineinykh otnositelno parametra”, Dalnevostochnyi mat. zhurn., 3:2 (2002), 173–194