On stability of solutions of extremum problems for stationary equations of mass transfer
Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse extremum problems for stationary equations of mass transfer are considered. Heat flux through the part of the boundary and the volume impurity source density play the role of controls. The mean quadratic integral deviation of the velocity or vorticity field from the given field in a part of the domain is chosen as the cost functional. Sufficient conditions to input data are established, which provide the uniqueness and stability of solutions.
@article{DVMG_2009_9_1_a0,
     author = {G. V. Alekseev and O. V. Soboleva},
     title = {On stability of solutions of extremum problems for stationary equations of mass transfer},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a0/}
}
TY  - JOUR
AU  - G. V. Alekseev
AU  - O. V. Soboleva
TI  - On stability of solutions of extremum problems for stationary equations of mass transfer
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2009
SP  - 5
EP  - 14
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a0/
LA  - ru
ID  - DVMG_2009_9_1_a0
ER  - 
%0 Journal Article
%A G. V. Alekseev
%A O. V. Soboleva
%T On stability of solutions of extremum problems for stationary equations of mass transfer
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2009
%P 5-14
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a0/
%G ru
%F DVMG_2009_9_1_a0
G. V. Alekseev; O. V. Soboleva. On stability of solutions of extremum problems for stationary equations of mass transfer. Dalʹnevostočnyj matematičeskij žurnal, Tome 9 (2009) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/DVMG_2009_9_1_a0/

[1] Gunzburger M.D., Hou L., Svobodny T.P., “The approximation of boundary control problems for fluid flows with an application to control by heating and cooling”, Comput. Fluids, 22 (1993), 239–251 | DOI | MR | Zbl

[2] Ito K., Ravindran S.S., “Optimal control of thermally convected fluid flows”, SIAM J. Sci. Comput., 19:6 (1998), 1847–1869 | DOI | MR | Zbl

[3] Alekseev G.V., “Razreshimost statsionarnykh zadach granichnogo upravleniya dlya uravnenii teplovoi konvektsii”, Sib. mat. zhurn., 39:5 (1998), 982–998 | MR | Zbl

[4] Lee N.-C., Imanuvilov O.Yu., “Analysis of optimal control problems for the 2-D stationary Boussinesq equations”, J. Math. Anal. Appl., 242 (2000), 191–211 | DOI | MR | Zbl

[5] Alekseev G.V., “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[6] Alekseev G.V., “Obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teorii massoperenosa”, Zhurn. vychisl. matem. matem. fiz., 42:3 (2002), 380–394 | MR | Zbl

[7] Alekseev G.V., “Edinstvennost i ustoichivost v koeffitsientnykh obratnykh ekstremalnykh zadachakh dlya statsionarnoi modeli massoperenosa”, Dokl. AN, 416:6 (2007), 750–753 | MR | Zbl

[8] Alekseev G.V., “Koeffitsientnye obratnye ekstremalnye zadachi dlya statsionarnykh uravnenii teplomassoperenosa”, Zhurn. vychisl. matem. matem. fiziki, 47:6 (2007), 1055–1076 | MR | Zbl

[9] Alekseev G.V., Soboleva O.V., Tereshko D.A., “Zadachi identifikatsii dlya statsionarnoi modeli massoperenosa”, Prikl. mekh. tekhn. fiz., 49:4 (2008), 24–35 | MR | Zbl

[10] Alekseev G.V., Tereshko D.A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008