The solvability of extremal problems for Poisson equation and Stokes system
Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 164-170
Voir la notice de l'article provenant de la source Math-Net.Ru
One consider the extremal problems for Poisson equation and Stokes system which are to minimize the $L^2$-difference solution from given function. The sufficient conditions of solvability in the Sobolev space $H^1$ are obtained. It is showed that these conditions are necessary in some cases.
@article{DVMG_2008_8_2_a2,
author = {A. A. Illarionov},
title = {The solvability of extremal problems for {Poisson} equation and {Stokes} system},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {164--170},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a2/}
}
TY - JOUR AU - A. A. Illarionov TI - The solvability of extremal problems for Poisson equation and Stokes system JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2008 SP - 164 EP - 170 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a2/ LA - ru ID - DVMG_2008_8_2_a2 ER -
A. A. Illarionov. The solvability of extremal problems for Poisson equation and Stokes system. Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 164-170. http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a2/