On uniqueness of the solution of inverse coefficient problem for the equation of reaction--convection--diffusion
Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 143-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse coefficient problem for the equation of reaction–convection–diffusion is considered. The sufficient conditions of the local uniqueness of the solution of this problem are deduced.
@article{DVMG_2008_8_2_a0,
     author = {R. V. Brizitskii and E. R. Kozhushnaya},
     title = {On uniqueness of the solution of inverse coefficient problem for the equation of reaction--convection--diffusion},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {143--151},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a0/}
}
TY  - JOUR
AU  - R. V. Brizitskii
AU  - E. R. Kozhushnaya
TI  - On uniqueness of the solution of inverse coefficient problem for the equation of reaction--convection--diffusion
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2008
SP  - 143
EP  - 151
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a0/
LA  - ru
ID  - DVMG_2008_8_2_a0
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%A E. R. Kozhushnaya
%T On uniqueness of the solution of inverse coefficient problem for the equation of reaction--convection--diffusion
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2008
%P 143-151
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a0/
%G ru
%F DVMG_2008_8_2_a0
R. V. Brizitskii; E. R. Kozhushnaya. On uniqueness of the solution of inverse coefficient problem for the equation of reaction--convection--diffusion. Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 143-151. http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a0/

[1] A. Friedman, B. Gustafsson, “Identification of the conductivity coefficient in an elliptic equation”, SIAM J. Math. Anal., 18 (1987), 777–787 | DOI | MR | Zbl

[2] R. Acar, “Identification of the coefficient in elliptic equations”, SIAM J. Control Optimization, 31:4 (1993), 146–149 | MR

[3] V. I. Gromovyk, E. G. Ivanyk, O. V. Sikora, “A method of identification of convective heat transfer coefficient”, Mat. Metody Fiz.-Mekh., 43:4 (2000), 146–149 | MR | Zbl

[4] A. A. Samarskii, P. N. Vabischevich, Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, M., 2004, 480 pp.

[5] P. N. Vabischevich, “Chislennoe reshenie zadachi identifikatsii mladshego koeffitsienta ellipticheskogo uravneniya”, Differentsialnye uravneniya, 38:7 (2006), 1000–1006

[6] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 13 (1997), 995–1013 | DOI | MR | Zbl

[7] G. V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[8] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, “Razreshimost kraevoi zadachi dlya statsionarnykh uravnenii teplomassoperenosa pri smeshannykh kraevykh usloviyakh”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 66–80 | MR

[9] P. Grisvard, Elliptic problems in nonsmooth domains. Monograph and studies in mathematics, Pitman, London, 1985 | MR | Zbl

[10] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[11] Zh. Sea, Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973