On uniqueness of the solution of inverse coefficient problem for the equation of reaction–convection–diffusion
Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 143-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse coefficient problem for the equation of reaction–convection–diffusion is considered. The sufficient conditions of the local uniqueness of the solution of this problem are deduced.
@article{DVMG_2008_8_2_a0,
     author = {R. V. Brizitskii and E. R. Kozhushnaya},
     title = {On uniqueness of the solution of inverse coefficient problem for the equation of reaction{\textendash}convection{\textendash}diffusion},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {143--151},
     year = {2008},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a0/}
}
TY  - JOUR
AU  - R. V. Brizitskii
AU  - E. R. Kozhushnaya
TI  - On uniqueness of the solution of inverse coefficient problem for the equation of reaction–convection–diffusion
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2008
SP  - 143
EP  - 151
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a0/
LA  - ru
ID  - DVMG_2008_8_2_a0
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%A E. R. Kozhushnaya
%T On uniqueness of the solution of inverse coefficient problem for the equation of reaction–convection–diffusion
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2008
%P 143-151
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a0/
%G ru
%F DVMG_2008_8_2_a0
R. V. Brizitskii; E. R. Kozhushnaya. On uniqueness of the solution of inverse coefficient problem for the equation of reaction–convection–diffusion. Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 2, pp. 143-151. http://geodesic.mathdoc.fr/item/DVMG_2008_8_2_a0/

[1] A. Friedman, B. Gustafsson, “Identification of the conductivity coefficient in an elliptic equation”, SIAM J. Math. Anal., 18 (1987), 777–787 | DOI | MR | Zbl

[2] R. Acar, “Identification of the coefficient in elliptic equations”, SIAM J. Control Optimization, 31:4 (1993), 146–149 | MR

[3] V. I. Gromovyk, E. G. Ivanyk, O. V. Sikora, “A method of identification of convective heat transfer coefficient”, Mat. Metody Fiz.-Mekh., 43:4 (2000), 146–149 | MR | Zbl

[4] A. A. Samarskii, P. N. Vabischevich, Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, M., 2004, 480 pp.

[5] P. N. Vabischevich, “Chislennoe reshenie zadachi identifikatsii mladshego koeffitsienta ellipticheskogo uravneniya”, Differentsialnye uravneniya, 38:7 (2006), 1000–1006

[6] K. Ito, K. Kunisch, “Estimation of the convection coefficient in elliptic equations”, Inverse Problems, 13 (1997), 995–1013 | DOI | MR | Zbl

[7] G. V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[8] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, “Razreshimost kraevoi zadachi dlya statsionarnykh uravnenii teplomassoperenosa pri smeshannykh kraevykh usloviyakh”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 66–80 | MR

[9] P. Grisvard, Elliptic problems in nonsmooth domains. Monograph and studies in mathematics, Pitman, London, 1985 | MR | Zbl

[10] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[11] Zh. Sea, Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973