Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2008_8_1_a4, author = {V. N. Dubinin and D. B. Karp and V. A. Shlyk}, title = {Selected problems of geometrical theory of functions and potential theory}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {46--95}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a4/} }
TY - JOUR AU - V. N. Dubinin AU - D. B. Karp AU - V. A. Shlyk TI - Selected problems of geometrical theory of functions and potential theory JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2008 SP - 46 EP - 95 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a4/ LA - ru ID - DVMG_2008_8_1_a4 ER -
V. N. Dubinin; D. B. Karp; V. A. Shlyk. Selected problems of geometrical theory of functions and potential theory. Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 1, pp. 46-95. http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a4/
[1] E. G. Akhmedzyanova, “Simmetrizatsiya otnositelno gipersfery”, Dalnevost. mat. sb., 1995, no. 1, 40–50 | Zbl
[2] A. K. Bakhtin, “Ekstremalnye zadachi so svobodnymi polyusami na okruzhnosti”, Dopov. NAN Ukraini, 5 (2005), 7–10
[3] A. K. Bakhtin, A. L. Targonskii, “Ekstremalnye zadachi o nenalegayuschikh oblastyakh so svobodnymi polyusami na luchakh”, Dopov. NAN Ukraini, 7 (2004), 7–13 | MR
[4] Yu. M. Berezanskii, Yu. G. Kondratev, Spektralnye metody v beskonechnomernom analize, Naukova Dumka, Kiev, 1988 | MR
[5] G. M. Goluzin, “Nekotorye teoremy pokrytiya v teorii analiticheskikh funktsii”, Matem. sb., 22:3 (1948), 353–372 | MR | Zbl
[6] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremenogo, Nauka, M., 1966 | MR
[7] A. S. Gulyaev, V. A. Shlyk, “O kanonicheskikh otobrazheniyakh na krugovye oblasti s radialnymi razrezami”, Zap. nauchn. semin. POMI, 337, 2006, 35–50 | MR | Zbl
[8] I. N. Demshin, Yu. V. Dymchenko, V. A. Shlyk, “Kriterii nul-mnozhestv dlya vesovykh sobolevskikh prostranstv”, Zap. nauchn. semin. POMI, 276, 2001, 52–82 | MR | Zbl
[9] I. N. Demshin, V. A. Shlyk, “Kriterii ustranimykh mnozhestv dlya vesovykh prostranstv garmonicheskikh funktsii”, Zap. nauchn. semin. POMI, 286, 2002, 62–73 | MR | Zbl
[10] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962
[11] K. Dochev, “O nekotorykh ekstremalnykh svoistvakh mnogochlenov”, Dokl. AN SSSR, 153:3 (1963), 519–521 | Zbl
[12] V. N. Dubinin, “Preobrazovaniya kondensatorov v $n$-mernom prostranstve”, Zap. nauchn. semin. POMI, 196, 1991, 41–60 | MR
[13] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, 49:1 (1994), 3–76 | MR | Zbl
[14] V. N. Dubinin, “Printsip mazhoratsii dlya $p$-listnykh funktsii”, Matem. zametki, 65:4 (1999), 533–541 | MR | Zbl
[15] V. N. Dubinin, “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl
[16] V. N. Dubinin, “O primenenii konformnykh otobrazhenii v neravenstvakh dlya ratsionalnykh funktsii”, Izv. RAN. Ser. matem., 66:2 (2002), 67–80 | MR | Zbl
[17] V. N. Dubinin, “K neravenstvu Shvartsa na granitse dlya regulyarnykh v kruge funktsii”, Zap. nauchnykh seminarov POMI, 286, 2002, 74–84 | MR | Zbl
[18] V. N. Dubinin, “Obobschennye kondensatory i asimptotika ikh emkostei pri vyrozhdenii nekotorykh plastin”, Zap. nauchnykh seminarov POMI, 302, 2003, 38–51 | MR
[19] V. N. Dubinin, Emkosti kondensatorov v geometricheskoi teorii funktsii, Iz-vo Dalnevost. un-ta, Vladivostok, 2003
[20] V. N. Dubinin, “Lemma Shvartsa i otsenki koeffitsientov dlya regulyarnykh funktsii so svobodnoi oblastyu opredeleniya”, Matem. sbornik, 196:11 (2005), 53–74 | MR | Zbl
[21] V. N. Dubinin, “Neravenstva dlya kriticheskikh znachenii polinomov”, Matem. sbornik, 197:8 (2006), 63–72 | MR | Zbl
[22] V. N. Dubinin, “Lemniskata i neravenstva dlya logarifmicheskoi emkosti kontinuuma”, Matem. zametki, 80:1 (2006), 33–37 | MR | Zbl
[23] V. N. Dubinin, “Emkosti kondensatorov, obobscheniya lemm Gretsha i simmetrizatsiya”, Zap. nauchn. semin. POMI, 337, 2006, 73–100 | MR | Zbl
[24] V. N. Dubinin, “O primenenii lemmy Shvartsa k neravenstvam dlya tselykh funktsii s ogranicheniyami na nuli”, Zap. nauchn. semin. POMI, 337, 2006, 101–112 | MR | Zbl
[25] V. N. Dubinin, E. G. Akhmedzyanova, “Radialnye preobrazovaniya mnozhestv i neravenstva dlya transfinitnogo diametra”, Izv. vuzov. Matematika, 1999, no. 4, 3–8 | MR | Zbl
[26] V. N. Dubinin, S. I. Kalmykov, “Printsip mazhoratsii dlya meromorfnykh funktsii”, Matem. sbornik, 198:12 (2007), 37–46 | MR | Zbl
[27] V. N. Dubinin, V. Yu. Kim, “O pokrytii radialnykh otrezkov pri $p$-listnykh otobrazheniyakh kruga i koltsa”, Dalnevost. matem. zhurnal, 7:1-2 (2007), 40–47
[28] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Zap. nauchnykh seminarov POMI, 254, 1998, 76–94 | MR
[29] V. N. Dubinin, E. V. Kostyuchenko, “Ekstremalnye zadachi teorii funktsii, svyazannye s $n$-kratnoi simmetriei”, Zap. nauchnykh seminarov POMI, 276, 2001, 83–111 | MR | Zbl
[30] V. N. Dubinin, E. G. Prilepkina, “Ob ekstremalnom razbienii prostranstvennykh oblastei”, Zap. nauchnykh seminarov POMI, 254, 1998, 95–107 | MR
[31] V. N. Dubinin, E. G. Prilepkina, “K teoremam edinstvennosti dlya preobrazovanii mnozhestv i kondensatorov na ploskosti”, Dalnevost. matem. zhurnal, 3:2 (2002), 135–147
[32] V. N. Dubinin, E. G. Prilepkina, “O sokhranenii obobschennogo privedennogo modulya pri geometricheskikh preobrazovaniyakh ploskikh oblastei”, Dalnevost. matem. zhurnal, 6:1-2 (2005), 39–56
[33] V. N. Dubinin, E. G. Prilepkina, “O variatsionnykh printsipakh konformnykh otobrazhenii”, Algebra i analiz, 18:3 (2006), 39–62 | MR
[34] Yu. V. Dymchenko, “Ravenstvo emkosti i modulya kondensatora na poverkhnosti”, Zap. nauchnykh seminarov POMI, 276, 2001, 112–133 | MR | Zbl
[35] L. V. Kovalev, “O vnutrennikh radiusakh simmetrichnykh nenalegayuschikh oblastei”, Izvestiya vuzov. Matematika, 2000, no. 6, 80–81 | MR | Zbl
[36] L. V. Kovalev, “Otsenki konformnogo radiusa i teoremy iskazheniya dlya odnolistnykh funktsii”, Zap. nauchnykh seminarov POMI, 263, 2000, 141–156 | MR | Zbl
[37] L. V. Kovalev, “Monotonnost obobschennogo privedennogo modulya”, Zap. nauchnykh seminarov POMI, 276, 2001, 219–236 | MR | Zbl
[38] E. V. Kostyuchenko, “Reshenie odnoi zadachi ob ekstremalnom razbienii”, Dalnevost. matem. zhurn., 2:1 (2001), 3–15
[39] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii I, II”, Algebra i analiz, 9:3 (1997), 41–103 ; 5, 1–50 | MR | MR
[40] P. P. Kufarev, “K voprosu o konformnykh otobrazheniyakh dopolnitelnykh oblastei”, Dokl. AN SSSR, 73:5 (1950), 881–884 | MR | Zbl
[41] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR
[42] A. L. Lukashov, “Neravenstva dlya proizvodnykh ratsionalnykh funktsii na neskolkikh otrezkakh”, Izv. RAN. Ser. mat., 68:3 (2004), 115–138 | MR
[43] A. L. Lukashov, “Otsenki proizvodnykh ratsionalnykh funktsii i chetvertaya zadacha Zolotareva”, Algebra i analiz, 19:2 (2007), 122–130 | MR
[44] I. I. Lyashko, I. M. Velikoivanenko, V. I. Lavrik, G. E. Mistetskii, Metod mazhorantnykh oblastei v teorii filtratsii, Naukova dumka, Kiev, 1974 | MR
[45] I. P. Mityuk, Simmetrizatsionnye metody i ikh prilozhenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Iz-vo Kubanskogo un-ta, Krasnodar, 1980
[46] A. V. Olesov, “O prilozhenii konformnykh otobrazhenii k neravenstvam dlya trigonometricheskikh polinomov”, Matem. zametki, 76:3 (2004), 396–408 | MR | Zbl
[47] A. V. Olesov, “Neravenstva dlya mazhorantnykh analiticheskikh funktsii”, Zap. nauchnykh seminarov POMI, 314, 2004, 155–173 | MR | Zbl
[48] A. V. Olesov, “Neravenstva dlya tselykh funktsii konechnoi stepeni i polinomov”, Zap. nauchnykh seminarov POMI, 314, 2004, 174–195 | Zbl
[49] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, M., 1962 | MR
[50] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Minsk, 1979 | MR
[51] G. Sege, Ortogonalnye mnogochleny, GIFML, M., 1962
[52] A. Yu. Solynin, “Izoperimetricheskie neravenstva dlya mnogougolnikov i dissimmetrizatsiya”, Algebra i analiz, 4:2 (1992), 210–234 | MR
[53] A. Yu. Solynin, “Polyarizatsiya i funktsionalnye neravenstva”, Algebra i analiz, 8:6 (1996), 148–185 | MR | Zbl
[54] A. Yu. Solynin, “Moduli i ekstremalno-metricheskie problemy”, Algebra i analiz, 11:1 (1999), 3–86 | MR | Zbl
[55] P. M. Tamrazov, “Emkosti kondensatorov. Metod peremeshivaniya zaryadov”, Matem. sbornik, 115:1 (1981), 40–73 | MR | Zbl
[56] V. A. Shlyk, “O ravenstve $p$-emkosti i $p$-modulya”, Sib. matem. zhurnal, 34:6 (1993), 216–221 | MR | Zbl
[57] V. A. Shlyk, “Vesovye emkosti, moduli kondensatorov i isklyuchitelnye mnozhestva po Fyuglede”, Dokl. RAN, 332:4 (1993), 428–431 | MR | Zbl
[58] G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, M. Vourinen, “Inequalities for zero-balanced hypergeometric functions”, Trans. Amer. Math. Soc., 347 (1995), 1713–1723 | DOI | MR | Zbl
[59] A. Baernstein, “A unified approach to symmetrization”, Partial Differential Equations of Elliptic Type, Symposia Math., 35, Cambridge Univ. Press, Cambridge, 1994, 47–91 | MR | Zbl
[60] A. Baernstein, “The $^*$-function in complex analysis”, Handbook of complex analysis: Geometric function theory, 1, Elsevier, Amsterdam, 2002, 229–271 | MR
[61] C. Bandle, M. Flucher, “Harmonic radius and concentration of energy, hyperbolic radius and Liouville's equations $\Delta U=e^U$ and $\Delta U=U^{(n+2)/(n-2)}$”, SIAM Review, 38:2 (1996), 191–238 | DOI | MR | Zbl
[62] R. W. Barnard, A. Yu. Solynin, “Local variations and minimal area problem for Carathe odory functions”, Indiana Univ. Math. J., 53 (2004), 135–168 | DOI | MR
[63] R. W. Barnard, K. Richardson, A. Yu. Solynin, “Concentration of area in half-planes”, Proc. Amer. Math. Soc., 133 (2005), 2091–2099 | DOI | MR | Zbl
[64] K. F. Barth, D. A. Brannan, W. K. Hayman, “Research problems in complex analysis”, Bull. London Math. Soc., 16:5 (1984), 490–517 | DOI | MR | Zbl
[65] A. F. Beardon, D. Minda, T. W. Ng, “Smale's mean value conjecture and the hyperbolic metric”, Math. Ann., 322:4 (2002), 623–632 | DOI | MR | Zbl
[66] D. Betsakos, “Polarization, conformal invariants, and Brownian motion”, Ann. Acad. Sci. Fen. Math., 23 (1998), 59–82 | MR | Zbl
[67] P. Borwein, T. Erdelyi, Polynomials and polynomial inequatities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR
[68] D.-W. Byun, “Inversions of Hermite Semigroup”, Proc. Amer. Math. Soc., 118:2 (1993), 437–445 | MR | Zbl
[69] B. C. Carlson, J. L. Gustafson, “Asymptotic expansion of the first elliptic integral”, SIAM J. Math. Anal., 16:5 (1985), 1072–1092 | DOI | MR | Zbl
[70] B. C. Carlson, “Some inequalities for hypergeometric functions”, Proc. of Amer. Math. Soc., 17:1 (1966), 32–39 | MR | Zbl
[71] V. N. Dubinin, “Capacities and geometric transformations of subsets in $n$-space”, Geometric and Functional Analysis, 3:4 (1993), 342–369 | DOI | MR | Zbl
[72] V. N. Dubinin, D. B. Karp, “Generalized condensers and distortion theorems for conformal mappings of planar domains”, The Interaction of Analysis and Geometry, 424, eds. V. I. Burenkov, T. Iwaniec, and S. K. Vodopyanov, AMS Contemporary Mathematics, 2007, 33–51 | MR | Zbl
[73] P. Duren, “Robin capacity”, Computational methods and Function Theory (CMFT'97), eds. N. Papamichael, St. Ruscheweyh, E. B. Saff, World scientific Publishing Co., 1999, 177–190 | MR | Zbl
[74] P. Duren, M. Schiffer, “Robin functions and energy functionals of multiply connected domains”, Pacific J. Math., 148 (1991), 251–273 | MR | Zbl
[75] P. Duren, M. M. Schiffer, “Robin functions and distortion of capacity under conformal mapping”, Complex Variables, 21 (1993), 189–196 | MR | Zbl
[76] C. Ferreira, J. L. Lopez, “Asymptotic Expansions of the Appell's Function $F_1$”, Q. Appl. Math., 62:2 (2004), 235–257 | MR | Zbl
[77] D. Gaier, W. Hayman, “On the computation of modules of long quadrilaterals”, Constr. Approx., 7 (1991), 453–467 | DOI | MR | Zbl
[78] W. K. Hayman, Multivalent functions, Second ed., Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[79] D. Karp, A. Savenkova, S. M. Sitnik, “Series expansions for the third incomplete elliptic integral via partial fraction decompositions”, J. of Comput. and Appl. Math., 207 (2007), 331–337 | DOI | MR | Zbl
[80] D. Karp, S. M. Sitnik, “Asymptotic approximations for the first incomplete elliptic integral near logarithmic singularity”, J. of Comput. and Appl. Math., 205 (2007), 186–206 | DOI | MR | Zbl
[81] D. Karp, “An approximation for zero–balanced Appell function $F_1$ near $(-1,1)$”, J. Math. Anal. Appl., 339 (2008), 1332–1341 | DOI | MR | Zbl
[82] D. Karp, “Hypergeometric reproducing kernels and analytic continuation from a half-line”, J. of Integral Transforms and Special Functions, 14:6 (2003), 485–498 | DOI | MR | Zbl
[83] D. Karp, “Holomorphic spaces related to orthogonal polynomials and analytic continuation of functions”, Analytic Extension Formulas and their Applications, eds. S. Saitoh, N. Hayashi and M. Yamamoto, Kluwer Academic Publishers, 2001, 169–188 | MR
[84] D. Karp, “Square summability with geometric weight for classical orthogonal expansions”, Advances in Analysis, Proceedings of the 4th International ISAAC Conference, eds. H. G. W. Begehr et al, World Scientific, Singapore – NewJersey – London, 2005, 407–421 | MR | Zbl
[85] D. Karp, S. M. Sitnik, “Inequalities and monotonicity of ratios for generalized hypergeometric function”, RGMIA Research Report Collection, 10:2 (2007), Article 7
[86] S. Kirsch, “Transfinite diameter, Chebyshev constant and capacities”, Handbook of complex analysis: Geometric function theory, 2, Elsevier, Amsterdam, 2005, 243–308 | MR | Zbl
[87] Y. L. Luke, “Inequalities for generalized hypergeometric functions”, J. Approximation Theory, 5 (1972), 41–65 | DOI | MR | Zbl
[88] Y. L. Luke, “Inequalities for generalized hypergeometric functions of two variables”, J. Approximation Theory, 11 (1974), 73–84 | DOI | MR | Zbl
[89] P. R. Mercer, “Sharpened versions of the Schwarz Lemma”, J. Math. Anal. Appl., 205 (1997), 508–511 | DOI | MR | Zbl
[90] S. Nasyrov, “Robin capacity and lift of infinitely thin airfoils”, Complex Variables, 47:2 (2002), 93–107 | DOI | MR | Zbl
[91] M. Ohtsuka, Extremal length and precise functions, Math. Sci. and Appl., 19, Tokio, 2003 | MR | Zbl
[92] R. Osserman, “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128:12 (2000), 3513–3517 | DOI | MR | Zbl
[93] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, Berlin, 1992 | MR | Zbl
[94] Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Math. Soc. Monographs, New Series, 26, Clarendon Press, Oxford, 2002 | MR
[95] J. Sarvas, “Symmetrization of condensers in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 522 (1972), 1–44 | MR
[96] S. Smale, “The fundamental theorem of algebra and complexity theory”, Bull. Amer. Math. Soc., 4:1 (1981), 1–36 | DOI | MR | Zbl
[97] G. Szego, Jahresber, Dtsch. Math. Ver., 31, 1922, 42 pp. (Aufgabe 2) | Zbl
[98] A. Vasil'ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer, 2002 | MR
[99] M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer, 1988 | MR | Zbl
[100] V. Wolontis, “Properties of conformal invariants”, Amer. J. Math., 74:3 (1952), 587–606 | DOI | MR | Zbl