Radiation Tomography and transport equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 1, pp. 5-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse problems for integro-differential radiative transfer equation with various boundary conditions have been considered in the paper. The problems are interpreted as problems of the X-ray and optical tomography. The results of the authors' investigations devoted to the problems of the attenuation coefficient determining and the equation coefficients discontinuity boundaries finding for 3D bounded domain are adduced as well as the results, concerning the problems of the refractive indices and optical thickness finding for an inhomogeneous layered medium.
@article{DVMG_2008_8_1_a1,
     author = {D. S. Anikonov and A. E. Kovtanyuk and D. S. Konovalova and V. G. Nazarov and I. V. Prokhorov and I. P. Yarovenko},
     title = {Radiation {Tomography} and transport equation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a1/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - A. E. Kovtanyuk
AU  - D. S. Konovalova
AU  - V. G. Nazarov
AU  - I. V. Prokhorov
AU  - I. P. Yarovenko
TI  - Radiation Tomography and transport equation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2008
SP  - 5
EP  - 18
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a1/
LA  - ru
ID  - DVMG_2008_8_1_a1
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A A. E. Kovtanyuk
%A D. S. Konovalova
%A V. G. Nazarov
%A I. V. Prokhorov
%A I. P. Yarovenko
%T Radiation Tomography and transport equation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2008
%P 5-18
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a1/
%G ru
%F DVMG_2008_8_1_a1
D. S. Anikonov; A. E. Kovtanyuk; D. S. Konovalova; V. G. Nazarov; I. V. Prokhorov; I. P. Yarovenko. Radiation Tomography and transport equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 8 (2008) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/DVMG_2008_8_1_a1/

[1] G. I. Marchuk, G. A. Mikhailov, M. A. Nazarliev i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl

[2] A. Isimaru, Rasprostranenie i rasseyanie voln v sluchaino-neodnorodnykh sredakh, 1, no. 2, Mir, M., 1981

[3] T. A. Sushkevich, Matematicheskie modeli perenosa izlucheniya, BINOM. Laboratoriya znanii, M., 2006

[4] V. S. Vladimirov, “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Trudy MIAN SSSR, 61, 1961, 3–158

[5] O. I. Leipunskii, B. A. Novozhilov, V. I. Sakharov, Rasprostranenie gamma-kvantov v veschestve, GIMFL, M., 1960

[6] U. Fano, L. Spenser, M. Berger, Perenos gamma-izlucheniya, Gosatomizdat, M., 1963

[7] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Ispolzovanie uravnenie perenosa v tomografii, Logos, M., 2000

[8] D. S. Anikonov, A. E. Kovtanyuk and I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht – Boston, 2002 | MR

[9] T. A. Germogenova, Lokalnye svoistva resheniya uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[10] I. V. Prokhorov, “O razreshimosti kraevoi zadachi dlya uravneniya perenosa izlucheniya s obobschennymi usloviyami sopryazheniya na granitse razdela sred”, Izvestiya RAN. Seriya matematicheskaya, 67:6 (2003), 169–192 | MR | Zbl

[11] F. Natterer, Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[12] J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Berichte Sachsische Akademie der Wissenschaften. Lleipzig, Math. – Phys. K.1, 69 (1917), 262–277 | MR

[13] E. Yu. Derevtsov, V. V. Pickalov, T. Schuster, A. K. Louis, International Conference “Inverse Problems: Modeling and Simulation” (May 29 – June 02, 2006, Fethiey, Turkey), Abstracts, 2006, 38–40

[14] M. Lassas, V. A. Sharafutdinov, G. Uhlmann, “Semiglobal boundary rigidity for Riemannian metrics”, Math. Ann., 325 (2003), 767–793 | DOI | MR | Zbl

[15] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR | Zbl

[16] A. E. Kovtanyuk, I. V. Prokhorov, “Tomography problem for the polarized-radiation transfer equation”, Journal of Inverse and Ill-Posed Problems, 14:6 (2006), 609–620 | DOI | MR | Zbl

[17] A. E. Kovtanyuk, I. V. Prokhorov, “Chislennoe reshenie obratnoi zadachi dlya uravneniya perenosa polyarizovannogo izlucheniya”, Sibirskii zhurnal vychislitelnoi matematiki, 11:1 (2008), 55–68

[18] D. S. Anikonov, “Heterogeneity indicator for medium radiography”, Abstract of Parcific International Conference (1995, August 13–20, Vladivostok), 7

[19] D. S. Anikonov, “Integro-differential indicator in tomography problem”, Journal of Inverse and Ill-Posed Problems, 7:1 (1999), 17–59 | DOI | MR | Zbl

[20] D. S. Anikonov, V. G. Nazarov and I. V. Prokhorov, Poorly Visible Media in X-ray Tomography, VSP, Utrecht – Boston, 2002

[21] E. I. Vainberg, I. A. Kazak, V. P. Kurozaev, “Rekonstruktsiya vnutrennei prostranstvennoi struktury ob'ektov po integralnym proektsiyam v realnom masshtabe vremeni”, Defektoskopiya, 1981, no. 6, 10–21

[22] E. I. Vainberg, I. A. Kazak, M. L. Faingoiz, “Rentgenovskaya vychislitelnaya tomografiya po metodu obratnogo proetsirovaniya”, Defektoskopiya, 1985, no. 2, 31–39 | MR

[23] M. M. Lavrentev, “Matematicheskie zadachi tomografii i giperbolicheskie otobrazheniya”, Sib. matem. zhurnal, 42:5(249) (2001), 1094–1105 | MR

[24] I. V. Prokhorov, “Opredelenie poverkhnosti razdela sred po dannym tomograficheskogo prosvechivaniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:10 (2002), 1542–1555 | MR | Zbl

[25] I. V. Prokhorov , I. P. Yarovenko, and V. G. Nazarov, “Optical tomography problems at layered media”, IOP Publishing. Inverse Problems, 24:2 (2008) | MR | Zbl

[26] I. V. Prokhorov, I. P. Yarovenko, “Issledovanie zadach opticheskoi tomografii metodami teorii perenosa izlucheniya”, Optika i spektroskopiya, 101:5 (2006), 817–824

[27] I. P. Yarovenko, “Chislennoe reshenie kraevykh zadach dlya uravneniya perenosa izlucheniya v opticheskom diapazone”, Vychislitelnye metody i programmirovanie, 7 (2006), 93–104