Queueing models with different schemes of customers transformation
Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 101-107
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is devoted to a calculation of limit distributions in queueing systems and networks with different schemes of customers transformation. Models with customers: group arrival and dislocation, appearance and disappearance, division and aggregation and models with unreliable customers are considered. Product form limit distributions in these models are corollaries of the theorem 1 from [1] and equations of partial balance from [2].
@article{DVMG_2007_7_1_a9,
author = {G. Sh. Tsitsiashvili and M. A. Osipova},
title = {Queueing models with different schemes of customers transformation},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {101--107},
year = {2007},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a9/}
}
TY - JOUR AU - G. Sh. Tsitsiashvili AU - M. A. Osipova TI - Queueing models with different schemes of customers transformation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2007 SP - 101 EP - 107 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a9/ LA - ru ID - DVMG_2007_7_1_a9 ER -
G. Sh. Tsitsiashvili; M. A. Osipova. Queueing models with different schemes of customers transformation. Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 101-107. http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a9/
[1] G. Sh. Tsitsiashvili, M. A. Osipova, “Veroyatnostnoe raspredelenie v setyakh massovogo obsluzhivaniya s peremennoi strukturoi”, Problemy peredachi informatsii, 42:2 (2006), 101–108 | MR
[2] R. Serfozo, Introduction to Stochastic Networks, Springer Verlag, New York, 1999 | MR | Zbl
[3] G. I. Ivchenko, V. A. Kashtanov, I. N. Kovalenko, Teoriya massovogo obsluzhivaniya, M., 1982
[4] G. P. Basharin, A. L. Tolmachev, “Teoriya setei massovogo obsluzhivaniya i ee prilozheniya k analizu informatsionno-vychislitelnykh sistem”, Itogi nauki i tekhniki, ser. Teoriya veroyatnostei, M., 1983, 3–119 | MR