About one class of operators of transformation
Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 62-78
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the new class of operators of transformation for functions of one variable which can be used for studying singular elliptic regional problem in domain of space of Lobachevsky is described.
@article{DVMG_2007_7_1_a6,
author = {V. V. Katrakhov and E. D. Emtseva},
title = {About one class of operators of transformation},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {62--78},
year = {2007},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a6/}
}
V. V. Katrakhov; E. D. Emtseva. About one class of operators of transformation. Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 62-78. http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a6/
[1] V. V. Katrakhov, “Operatory preobrazovaniya i psevdodifferentsialnye operatory”, Sibirskii matematicheskii zhurnal, 21:1 (1980), 86–97 | MR | Zbl
[2] V. V. Katrakhov, “Ob odnoi kraevoi zadache dlya uravneniya Puassona”, Matematicheskii sbornik, 182:6 (1991), 849–876 | MR | Zbl
[3] V. V. Katrakhov, L. S. Mazelis, Nepreryvnost, popolnenie, zamykanie v metricheskikh prostranstvakh, Izd-vo DVGU, Vladivostok, 2000, 112 pp.
[4] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR
[5] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1974, 296 pp.