On the covering of radial segments under $p$-valent mappings of a disk and an annulus
Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 40-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

A covering theorem for radial segments is proved for $p$-valent functions in a circular annulus. As a corollary, a similar theorem for $p$-valent functions in a disc is obtained. These results contain many known covering theorems for conformal mappings.
@article{DVMG_2007_7_1_a4,
     author = {V. N. Dubinin and V. Yu. Kim},
     title = {On the covering of radial segments under $p$-valent mappings of a disk and an annulus},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
AU  - V. Yu. Kim
TI  - On the covering of radial segments under $p$-valent mappings of a disk and an annulus
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2007
SP  - 40
EP  - 47
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a4/
LA  - ru
ID  - DVMG_2007_7_1_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%A V. Yu. Kim
%T On the covering of radial segments under $p$-valent mappings of a disk and an annulus
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2007
%P 40-47
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a4/
%G ru
%F DVMG_2007_7_1_a4
V. N. Dubinin; V. Yu. Kim. On the covering of radial segments under $p$-valent mappings of a disk and an annulus. Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 40-47. http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a4/

[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[2] G. Szego, “Jahresber”, Dtsch. Math. Ver., 31:42 (1922) (Aufgabe 2) | Zbl

[3] V. N. Dubinin, “Ob odnom sposobe simmetrizatsii”, Nauchnye trudy Kubanskogo gos. un-ta, 1974, no. 180, 50–64 | MR

[4] V. N. Dubinin, “Simmetrizatsiya v teorii funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 49:1(295) (1994), 3–76 | MR | Zbl

[5] V. N. Dubinin, “Teoremy pokrytiya otrezkov pri konformnom otobrazhenii koltsa”, Izvestiya vuzov. Matematika, 1987, no. 9, 42–50 | MR | Zbl

[6] S. Kirsch, “Transfinite diameter, Chebyshev constant and capacity”, Handbook of complex analysis: Geometric function theory, v. 2, Elsevier, Amsterdam, 2005, 243–308 | MR | Zbl

[7] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968, 648 pp. | MR

[8] V. N. Dubinin, Nekotorye primeneniya lineino-usrednyayuschego preobrazovaniya v teoremakh pokrytiya, Dep. v VINITI, No 770-77, Kubanskii gos. un-t, Krasnodar, 1977

[9] V. Yu. Kim, O pokrytii radialnykh otrezkov pri $p$-listnom otobrazhenii koltsa, Preprint No 2 In-ta prikl. matem. DVO RAN, Dalnauka, Vladivostok, 2004, 11 pp.

[10] V. N. Dubinin, V. Yu. Kim, “Usrednyayuschee preobrazovanie mnozhestv i funktsii na rimanovykh poverkhnostyakh”, Izvestiya vuzov. Matematika, 2001, no. 5, 21–29 | MR | Zbl

[11] G. M. Goluzin, “Nekotorye teoremy pokrytiya v teorii analiticheskikh funktsii”, Matem. sb., 22:3 (1948), 353–372 | MR | Zbl

[12] M. Marcus, “Radial averaging of domains, estimates for Dirichlet integrals and applications”, J. anal. math., 27 (1974), 47–78 | DOI | MR | Zbl