Solution of the problem of a wing oscillation in a supersonic gas flow
Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 30-34
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of a thin wing oscillation in a supersonic flow that was formulated in [1] is solved for all frequency intervals.
@article{DVMG_2007_7_1_a2,
author = {T. P. Arsent'ev and R. G. Barantsev},
title = {Solution of the problem of a wing oscillation in a supersonic gas flow},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {30--34},
year = {2007},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a2/}
}
TY - JOUR AU - T. P. Arsent'ev AU - R. G. Barantsev TI - Solution of the problem of a wing oscillation in a supersonic gas flow JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2007 SP - 30 EP - 34 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a2/ LA - ru ID - DVMG_2007_7_1_a2 ER -
T. P. Arsent'ev; R. G. Barantsev. Solution of the problem of a wing oscillation in a supersonic gas flow. Dalʹnevostočnyj matematičeskij žurnal, Tome 7 (2007) no. 1, pp. 30-34. http://geodesic.mathdoc.fr/item/DVMG_2007_7_1_a2/
[1] R. G. Barantsev, “Vliyanie kriticheskikh chastot na postanovku zadachi o kolebanii tonkogo kryla v potoke gaza”, Dalnevostochnyi matematicheskii zhurnal, 5:1 (2004), 226–230
[2] Dzh. U. Mails, Potentsialnaya teoriya neustanovivshikhsya sverkhzvukovykh techenii, Fizmatgiz, M., 1963, 272 pp.
[3] R. G. Barantsev, “Metod poryadkovykh uravnenii”, Dalnevostochnyi matematicheskii zhurnal, 2:2 (2001), 5–9
[4] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Differentsialnye uravneniya matematicheskoi fiziki, GIFML, M., 1962
[5] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1962, 1100 pp.
[6] S. V. Vallander, Lektsii po gidroaeromekhanike, L., 1978, 296 pp.