About regularity of propagation of boundary perturbation fronts withing thin layers
Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 106-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following the shock compatibility condition on moving front surfaces withing elastic layers with an arbitrary geometry and a small thickness, attenuation equations for wave strengthes were found and analysed for shocks depending on the wave curvature and the wave front curvature.
@article{DVMG_2005_6_1_a9,
     author = {D. N. Lozitsky and V. E. Ragozina},
     title = {About regularity of propagation of boundary perturbation fronts withing thin layers},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {106--111},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a9/}
}
TY  - JOUR
AU  - D. N. Lozitsky
AU  - V. E. Ragozina
TI  - About regularity of propagation of boundary perturbation fronts withing thin layers
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2005
SP  - 106
EP  - 111
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a9/
LA  - ru
ID  - DVMG_2005_6_1_a9
ER  - 
%0 Journal Article
%A D. N. Lozitsky
%A V. E. Ragozina
%T About regularity of propagation of boundary perturbation fronts withing thin layers
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2005
%P 106-111
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a9/
%G ru
%F DVMG_2005_6_1_a9
D. N. Lozitsky; V. E. Ragozina. About regularity of propagation of boundary perturbation fronts withing thin layers. Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 106-111. http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a9/

[1] V. Novatskii, Teoriya uprugosti, Mir, M., 1975, 872 pp. | MR

[2] D. Blend, Nelineinaya dinamicheskaya teoriya uprugosti, Mir, M., 1972, 183 pp. | MR

[3] A. A. Burenin, A. R. Chernyshev, “Udarnye volny v izotropnom uprugom prostranstve”, PMM, 42:4 (1978), 711–717 | Zbl

[4] N. D. Verveiko, “Uprugie volny v tonkikh obolochkakh”, Tr. NII matematiki Voronezh. un-ta, 21 (1975), 18–20

[5] N. D. Verveiko, “Rasprostranenie voln v tonkikh uprugo-vyazko-plasticheskikh sloyakh”, Prikladnaya mekhanika, 21:12 (1985), 63–67

[6] G. I. Bykovtsev, D. D. Ivlev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998, 528 pp.

[7] E. A. Gerasimenko, V. E. Ragozina, “Geometricheskie i kinematicheskie ogranicheniya na razryvy funktsii na dvizhuschikhsya poverkhnostyakh”, Dalnevost. mat. zhurn., 5:1 (2004), 100–109