Optimization of ability to handle customers of opened queueing network
Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 88-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a problem of a maximization for an ability to handle customers of an opened queueing network is put and is solved. The ability to handle customers of the opened queueing network is a maximal input flow intensity, for which the network is not overloaded. It is represented as some nondifferantiable function of mean numbers of nodes attendances. This function is optimized by some decomposition algorithm.
@article{DVMG_2005_6_1_a7,
     author = {G. Sh. Tsitsiashvili},
     title = {Optimization of ability to handle customers of opened queueing network},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {88--93},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a7/}
}
TY  - JOUR
AU  - G. Sh. Tsitsiashvili
TI  - Optimization of ability to handle customers of opened queueing network
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2005
SP  - 88
EP  - 93
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a7/
LA  - ru
ID  - DVMG_2005_6_1_a7
ER  - 
%0 Journal Article
%A G. Sh. Tsitsiashvili
%T Optimization of ability to handle customers of opened queueing network
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2005
%P 88-93
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a7/
%G ru
%F DVMG_2005_6_1_a7
G. Sh. Tsitsiashvili. Optimization of ability to handle customers of opened queueing network. Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 88-93. http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a7/

[1] C. S. Chang, J. A. Thomas, S. H. Kiang, “On the stability of open networks: a unified approach by stochastic dominance”, Queueing systems, 15 (1994), 239–260 | DOI | MR | Zbl

[2] S. G. Foss, “Ergodichnost setei obsluzhivaniya”, Sibirskii matematicheskii zhurnal, 32:4 (1991), 184–203 | MR

[3] A. A. Borovkov, Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1971, 368 pp. | MR

[4] A. A. Borovkov, Kurs teorii veroyatnostei, Nauka, M., 1972, 288 pp. | MR

[5] Itogi nauki i tekhniki. Teoriya veroyatnostei. Mat. statistika. Teoreticheskaya kibernetika, 21, 1983, 180 pp.

[6] Yu. K. Mashunin, Metody i modeli vektornoi optimizatsii, Nauka, M., 1986, 141 pp. | MR | Zbl

[7] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989, 640 pp. | MR