About generalized resolvent of one integro-diferential operator of the second order on semiaxis
Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 71-81
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article a symmetrical integro-differential operator of the second order on semiaxis is considered. Its quasiselfadjoint extension is described, and the formula for all generalized resolvents of this operator in $L^2(0,+\infty)$ is constructed. It also prooves that any generalized resolvent $R_\lambda$ is an integral operator for any nonreal $\lambda$.
@article{DVMG_2005_6_1_a5,
author = {G. I. Sin'ko},
title = {About generalized resolvent of one integro-diferential operator of the second order on semiaxis},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {71--81},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a5/}
}
TY - JOUR AU - G. I. Sin'ko TI - About generalized resolvent of one integro-diferential operator of the second order on semiaxis JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2005 SP - 71 EP - 81 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a5/ LA - ru ID - DVMG_2005_6_1_a5 ER -
G. I. Sin'ko. About generalized resolvent of one integro-diferential operator of the second order on semiaxis. Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 71-81. http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a5/