About generalized resolvent of one integro-diferential operator of the second order on semiaxis
Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 71-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a symmetrical integro-differential operator of the second order on semiaxis is considered. Its quasiselfadjoint extension is described, and the formula for all generalized resolvents of this operator in $L^2(0,+\infty)$ is constructed. It also prooves that any generalized resolvent $R_\lambda$ is an integral operator for any nonreal $\lambda$.
@article{DVMG_2005_6_1_a5,
     author = {G. I. Sin'ko},
     title = {About generalized resolvent of one integro-diferential operator of the second order on semiaxis},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a5/}
}
TY  - JOUR
AU  - G. I. Sin'ko
TI  - About generalized resolvent of one integro-diferential operator of the second order on semiaxis
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2005
SP  - 71
EP  - 81
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a5/
LA  - ru
ID  - DVMG_2005_6_1_a5
ER  - 
%0 Journal Article
%A G. I. Sin'ko
%T About generalized resolvent of one integro-diferential operator of the second order on semiaxis
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2005
%P 71-81
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a5/
%G ru
%F DVMG_2005_6_1_a5
G. I. Sin'ko. About generalized resolvent of one integro-diferential operator of the second order on semiaxis. Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 71-81. http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a5/

[1] N. I. Akhiezer, I. N. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966, 543 pp. | MR | Zbl

[2] O. P. Kruglikova, “Obobschennye rezolventy i spektralnye funktsii odnogo integro-differentsialnogo operatora pervogo poryadka v prostranstve vektornoznachnykh funktsii”, Funktsionalnyi analiz, mezhvuz. sb., Ulyanovsk, 1997, 24–30 | MR | Zbl

[3] G. I. Sinko, “Ob obobschennoi rezolvente odnogo integro-differentsialnogo operatora”, Dalnevostochnyi matematicheskii sbornik, 6, Dalnauka, Vladivostok, 1998, 57–63

[4] G. I. Sinko, Spektralnaya teoriya integro-differentsialnykh operatorov v gilbertovom prostranstve, Izd-vo UGPI, Ussuriisk, 1999, 151 pp. | MR

[5] A. V. Tsyganov, “O spektralnykh razlozheniyakh operatorov differentsirovaniya”, Funktsionalnyi analiz, mezhvuz. sb., U lyanovsk, 1999, 53–63 | MR | Zbl

[6] A. V. Shtraus, “O spektralnykh funktsiyakh differentsialnykh operatorov”, Izv. AN SSSR. Ser. mat., 19:4 (1955), 201–220 | MR | Zbl

[7] A. V. Shtraus, “Obobschennye rezolventy simmetricheskikh operatorov”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 51–86 | MR | Zbl