About attenuation of impurity concentration front in a stream of an incompressible liquid
Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 112-116
Cet article a éte moissonné depuis la source Math-Net.Ru
According to the model of the essentially non-stationary (hyperbolic) diffusion impurity transfer in a stream of an incompressible liquid the differential equation of attenuation of concentration front is received and analysed numerically.
@article{DVMG_2005_6_1_a10,
author = {E. V. Obukhova},
title = {About attenuation of impurity concentration front in a stream of an incompressible liquid},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {112--116},
year = {2005},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a10/}
}
TY - JOUR AU - E. V. Obukhova TI - About attenuation of impurity concentration front in a stream of an incompressible liquid JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2005 SP - 112 EP - 116 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a10/ LA - ru ID - DVMG_2005_6_1_a10 ER -
E. V. Obukhova. About attenuation of impurity concentration front in a stream of an incompressible liquid. Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 112-116. http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a10/
[1] A. A. Burenin, E. V. Obukhova, “Perenos neszhimaemoi zhidkoi primesi pri uchete ee diffuzii v osnovnoi potok”, DMZh, 4:1 (2003), 101–107
[2] G. I. Bykovtsev, D. D. Ivlev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998
[3] E. A. Gerasimenko, V. E. Ragozina, “Geometricheskie i kinematicheskie ogranicheniya na razryvy funktsii na dvizhuschikhsya poverkhnostyakh”, DMZh, 5:1 (2004), 100–109
[4] T. Tomas, Plasticheskoe techenie i razrushenie v tvërdykh telakh, Mir, M., 1964, 308 pp.
[5] G. I. Barenblat, G. G. Chernyi, “O momentnykh sootnosheniyakh na poverkhnostyakh razryva v dissipativnykh sredakh”, PPM, 27:6 (1963), 784–787 | MR