Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2005_6_1_a0, author = {M. D. Gerasimenko and A. G. Kolomiets and M. Kasahara and J.-F. Cr\'etaux and L. Soudarin}, title = {Establishment of a global three-dimensional kinematic reference frame using {VLBI} and {DORIS} data}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {3--13}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a0/} }
TY - JOUR AU - M. D. Gerasimenko AU - A. G. Kolomiets AU - M. Kasahara AU - J.-F. Crétaux AU - L. Soudarin TI - Establishment of a global three-dimensional kinematic reference frame using VLBI and DORIS data JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2005 SP - 3 EP - 13 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a0/ LA - en ID - DVMG_2005_6_1_a0 ER -
%0 Journal Article %A M. D. Gerasimenko %A A. G. Kolomiets %A M. Kasahara %A J.-F. Crétaux %A L. Soudarin %T Establishment of a global three-dimensional kinematic reference frame using VLBI and DORIS data %J Dalʹnevostočnyj matematičeskij žurnal %D 2005 %P 3-13 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a0/ %G en %F DVMG_2005_6_1_a0
M. D. Gerasimenko; A. G. Kolomiets; M. Kasahara; J.-F. Crétaux; L. Soudarin. Establishment of a global three-dimensional kinematic reference frame using VLBI and DORIS data. Dalʹnevostočnyj matematičeskij žurnal, Tome 6 (2005) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/DVMG_2005_6_1_a0/
[1] Z. Altamini, P. Sillard, C. Boucher, “A new release of the International Terrestrial Reference Frame for earth science applications”, ITRF2000, J. Geohys. Res., 107:B10, 2214 (2002), 2–19 | DOI
[2] D. F. Argus, W. R. Peltier, M. M. Watkins, “Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy”, J. Geophys. Res., 104:B12 (1999), 29077–29093
[3] S. Calmant, J.-J. Valette, J.-F. Crétaux, L. Soudarin, “Tectonic plate motion and co-seismic steps surveyed by DORIS field beacons: the New Hebrides experiment”, Journal of Geodesy, 74 (2000), 512–518 | DOI
[4] A. Cazenave, K. Dominh, F. Ponchaut, L. Soudarin, J.-F. Crétaux, C. Le Provost, “Sea level changes from Topex-Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS”, Geophys. Res. Lett., 26 (1999), 2077–2080 | DOI
[5] Y.Q̇. Chen, A. Chrzanowski, J. M. Secord, “A strategy for the analysis of the stability of reference points in deformation surveys”, CISM journal ACSGC, 44:2 (1990), 141–149
[6] M. R. Craymer, P. Vaniček, “Netan – a computer programm for the interactive analysis of geodetic networks”, CISM journal ACSGC, 43:2 (1988), 25–37
[7] J.-F. Crétaux, L. Soudarin, A. Cazenave, F. Bouille, “Present-day tectonic plate motions and crustal deformations from the DORIS space system”, J. Geophys. Res., 103 (1998), 30167–30181 | DOI
[8] P. Davies, G. Blewitt, “Methodology for global geodetic time series estimation: A new tool for geodynamics”, J. Geophys. Res., 105:B5 (2000), 11083–11100 | DOI
[9] M. D. Gerasimenko, “Multigroup correlate method for adjustment of geodetic networks”, Geodesy and airphotosurveing, 5 (1977), 57–60 (in Russian)
[10] M. D. Gerasimenko, “Adjustment of large geodetic networks by the multigroup correlate method”, Geodesy, Mapping and Photogrammetry, 20:1 (1978), 14–16
[11] M. D. Gerasimenko, Optimal design and adjustment of geodetic networks, Nauka, Moscow, 1992, 160 pp. (in Russian) | Zbl
[12] M. D. Gerasimenko, Contemporary least squares adjustment with geodetic applications, Dalnauka, Vladivostok, 1998, 101 pp. (in Russian)
[13] M. D. Gerasimenko, M. Kasahara, “Tectonic plate motion and deformation by space geodesy measurements (on the question of fixing kinematic reference frame)”, Geology of the Pacific Ocean, 21:1 (2002), 3–13 (in Russian)
[14] M. D. Gerasimenko, T. Kato, “Establishment of the three-dimensional kinematics reference frame by space geodetic measurements”, Earth, Planets and Space, 52 (2000), 959–963
[15] K. Heki, “Horizontal and vertical crustal movements from three-dimensional very long baseline interferometry kinematic reference frame: Implication for the reversal timescale revision”, J. Geophys. Res., 101:B2 (1996), 3187–3198 | DOI
[16] ITRF2000 http://lareg.ensg.ing.fr/ITRF/ITRF2000/results/ITRF2000
[17] S. Mangiarotti, A. Cazenave, L. Soudarin, J-F. Crétaux, “Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy”, J. Geophys. Res., 106 (2001), 4277–4291 | DOI
[18] F. Nouel, J.-P. Berthias, M. Deleuze, A. Guitard, P. Laudet, A. Piuzzi, D. Pradines, C. Valorge, “Precise Centre National d'Etudes Spatiales orbits for Topex/Poseidon: is reaching 2 cm still a challenge?”, J. Geophys. Res., 99 (1994), 12 | DOI
[19] P. Sillard, C. Boucher, “A review of algebraic constraints in terrestrial reference frame datum definition”, Journal of Geodesy, 75:2001, 63–73 | Zbl
[20] L. Soudarin, A. Cazenave, “Global geodesy using doris data on Spot-2”, Geophys. Res. Lett., 20 (1993), 289–292 | DOI
[21] L. Soudarin, A. Cazenave, “Large scale tectonic plate motions measured with the DORIS space geodesy system”, Geophys. Res. Lett., 22 (1995), 469–472 | DOI
[22] L. Soudarin, J.-F. Crétaux, A. Cazenave, “Vertical crustal motions from the DORIS space geodesy system”, Geophys. Res. Lett., 26 (1999), 1207–1210 | DOI
[23] Y. Takahashi, “Differences of station velocities obtained by GSFC and IERS from those predicted by the nnr-NUVEL1A model and crustal deformation near plate boundaries”, J. Geod. Soc. Japan., 45:1 (1999), 9–29
[24] J. Van Mierlo, “Free network adjustment and S-transformations”, Deutsche Geodätische Kommission, 252:B (1980), 41–54