Control problems for the MGD model of viscous heat-conducting fluid under mixed boundary conditions
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 2, pp. 226-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

The control problems for the stationary equations of magnetic hydrodynamics of viscous heat-conducting fluid under mixed boundary conditions for velocity and electric and magnetic fields are considered. The regularity of Lagrange multipliers for the considered control problems is proved. The sufficient conditions of uniqueness of solutions of control problem for specific coast functional are obtained.
@article{DVMG_2004_5_2_a7,
     author = {R. V. Brizitskii},
     title = {Control problems for the {MGD} model of viscous heat-conducting fluid under mixed boundary conditions},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {226--238},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a7/}
}
TY  - JOUR
AU  - R. V. Brizitskii
TI  - Control problems for the MGD model of viscous heat-conducting fluid under mixed boundary conditions
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2004
SP  - 226
EP  - 238
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a7/
LA  - ru
ID  - DVMG_2004_5_2_a7
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%T Control problems for the MGD model of viscous heat-conducting fluid under mixed boundary conditions
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2004
%P 226-238
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a7/
%G ru
%F DVMG_2004_5_2_a7
R. V. Brizitskii. Control problems for the MGD model of viscous heat-conducting fluid under mixed boundary conditions. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 2, pp. 226-238. http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a7/

[1] G. V. Alekseev, R. V. Brizitskii, Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi teploprovodnoi zhidkosti so smeshannymi granichnymi usloviyami, Preprint No 2 IPM DVO RAN, Dalnauka, Vladivostok, 2004, 40 pp.

[2] A. J. Meir, P. G. Schmidt, “On electromagnetically and thermally driven liquid-metall flows”, Nonlinear Analysis, 47 (2001), 3281–3294 | DOI | MR | Zbl

[3] H. M. Park, W. S. Jung, “Numerical solution of optimal magnetic suppression of natural convection in magneto-hydrodynamic flows by empirical reduction of modes”, Computers Fluids, 31 (2002), 309–334 | DOI | Zbl

[4] G. V. Alekseev, R. V. Brizitskii, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti so smeshannymi granichnymi usloviyami”, Dalnevost. mat. zh., 4:1 (2003), 108–126

[5] A. J. Meir, “The equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions”, Comp. Math. Applic., 25 (1993), 13–29 | DOI | MR | Zbl

[6] G. V. Alekseev, “Razreshimost zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Sib. mat. zhurn., 45:2 (2004), 243–262 | MR

[7] G. V. Alekseev and A. B. Smishliaev, “Solvability of the boundary-value problems for the Boussinesq equations with inhomogeneous boundary conditions”, J. Math. Fluid Mech., 3:1 (2001), 18–39 | DOI | MR | Zbl

[8] G. V. Alekseev, A. B. Smyshlyaev, D. A. Tereshko, “Razreshimost kraevoi zadachi dlya statsionarnykh uravnenii teplomassoperenosa pri smeshannykh kraevykh usloviyakh”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 84–98 | MR

[9] G V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[10] V. Girault, P. A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986 | MR

[11] A. Valli, Orthogonal decompositions of $L^2(\Omega)^3$, Preprint UTM 493, Department of Mathematics. University of Toronto, Galamen, 1995

[12] P. Grisvard, Elliptic problems in nonsmooth domains, Monograph and studies in mathematics, Pitman, London, 1985 | MR | Zbl

[13] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl