Multi-server queueing system with competition between servers
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 2, pp. 218-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

Queueing systems with competition between servers or customers are widely used in modern data transmission and mobile telephone networks. But there is no analytical investigation of the influence of competition on the queueing systems characteristics. In this article a mathematical model of a multiserver queueing system with competition between servers is constructed. This system is compared with the classical multiserver queueing system, in terms of their abilities to handle customers, and the distribution tails of their stationary waiting times.
@article{DVMG_2004_5_2_a6,
     author = {G. Sh. Tsitsiashvili},
     title = {Multi-server queueing system with competition between servers},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {218--225},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a6/}
}
TY  - JOUR
AU  - G. Sh. Tsitsiashvili
TI  - Multi-server queueing system with competition between servers
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2004
SP  - 218
EP  - 225
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a6/
LA  - ru
ID  - DVMG_2004_5_2_a6
ER  - 
%0 Journal Article
%A G. Sh. Tsitsiashvili
%T Multi-server queueing system with competition between servers
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2004
%P 218-225
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a6/
%G ru
%F DVMG_2004_5_2_a6
G. Sh. Tsitsiashvili. Multi-server queueing system with competition between servers. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 2, pp. 218-225. http://geodesic.mathdoc.fr/item/DVMG_2004_5_2_a6/

[1] G. Anastasi, L. Lenzini, E. Mingozzi, A. Hettich, A. Kramling, “MAC Protocols for Wideband Wireless Local Access: Evolution Toward Wireless ATM”, IEEE Personal Communicatuions, 5:5 (1998), 53–64 | DOI

[2] S. Asmussen, Ruin Probabilities, World Scientific, Singapore, 2000, 388 pp. | MR

[3] C. M. Goldie, C. Kluppelberg, Subexponential Distributions, Preprint No 96–1, Johannes Guttenberg-Universitat Mainz, 1996, 20 pp.

[4] P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling Extremal Events, Springer, Berlin, 1997 | MR | Zbl

[5] G. Sh. Tsitsiashvili, N. V. Markova, “Asimptoticheskie kharakteristiki vykhodnykh potokov v setyakh massovogo obsluzhivaniya”, DVMZh, 4:1 (2003), 36–43

[6] P. Embrechts, N. Veraverbeke, “Estimates for the probability of ruin with special emphasis on the possibility of large claims”, Insurance: Math. Econom., 1 (1982), 55–72 | DOI | MR | Zbl

[7] J. Kiefer, J. Wolfowitz, “On the theory of queues with many servers”, Trans. Amer. Math. Soc., 78 (1955), 147–161 | MR

[8] W. Whitt, “The impact of a heavy-tailed service-time distribution upon the M/GI/s waiting-time distribution”, Queueing Systems, 36 (2000), 71–87 | DOI | MR | Zbl