Asymptotic analysis of customer delay time in multi-server queueing system
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 66-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic of distribution tail of delay time in multi-server queuing system is investigated. Dependence of customer waiting and delay times distributions on number of customers and on number of servers is analyzed.
@article{DVMG_2004_5_1_a7,
     author = {N. V. Markova},
     title = {Asymptotic analysis of customer delay time in multi-server queueing system},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {66--71},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a7/}
}
TY  - JOUR
AU  - N. V. Markova
TI  - Asymptotic analysis of customer delay time in multi-server queueing system
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2004
SP  - 66
EP  - 71
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a7/
LA  - ru
ID  - DVMG_2004_5_1_a7
ER  - 
%0 Journal Article
%A N. V. Markova
%T Asymptotic analysis of customer delay time in multi-server queueing system
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2004
%P 66-71
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a7/
%G ru
%F DVMG_2004_5_1_a7
N. V. Markova. Asymptotic analysis of customer delay time in multi-server queueing system. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 66-71. http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a7/

[1] P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997 | MR | Zbl

[2] S. Asmussen, Ruin Probabilities, World Scientific, Singapore, 2000 | MR

[3] T. Rolski, H. Schmidli, V. Schmidt, J. Teugels, Stochastic Processes for Insurance and Finance, Wiley, New York, 1999 | MR | Zbl

[4] S. Foss, F. Baccelli, D. Korshunov, “Asymptotics for Distributions of Stationary Characteristics in Queuing Networks with Heavy Tails”, Abstracts of Workshop “Modern Problems in Applied Probability”, Novosibirsk, 2000, 9–10

[5] W. Whitt, “The impact of a heavy-tailed service-time distribution upon the $M|G|s$ waiting time distribution”, Queuing Systems, 36 (2000), 71–87 | DOI | MR | Zbl

[6] J. Kiefer, J. Wolfowitz, “On the theory of queues with many servers”, Trans. Amer. Math. Soc., 78 (1955), 147–161 | MR

[7] D. B. H. Cline, “Convolution tails, product tails and domains of attraction”, Probab. Theory Relat. Fields, 72:4 (1986), 529–557 | DOI | MR | Zbl

[8] H. A. David, Order Statistics, John Wiley and Sons, New York, 1970 | MR | Zbl

[9] A. Scheller-Wolf, “Further delay moment results for FIFO multiserver queues”, Queuing Systems, 34 (2000), 387–400 | DOI | MR | Zbl

[10] G. Sh. Tsitsiashvili, N. V. Markova, “Asimptoticheskie kharakteristiki vykhodnykh potokov v setyakh massovogo obsluzhivaniya”, DV mat. zhurn., 4:1 (2003), 36–43