Transfinite diameters and modulii of condensers in semimetric spaces
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 12-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical definitions for transfinite diameter of a set and for transfinite (discrete) modulus of a condenser in $R^n$ have been extended for the objects in semimetric spaces. The Anderson-Vamanamurthy's folmula has been proved to be valid in arbitrary semimetric spaces. The Belinskij's problem on the Mobius property of topological embeddings, which are preserving transfinite modulii of all condensers of the given type, has been solved in the spaces with a continuous semimetric. Bibl. 12.
@article{DVMG_2004_5_1_a2,
     author = {V. V. Aseev and O. A. Lazareva},
     title = {Transfinite diameters and modulii of condensers in semimetric spaces},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {12--21},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a2/}
}
TY  - JOUR
AU  - V. V. Aseev
AU  - O. A. Lazareva
TI  - Transfinite diameters and modulii of condensers in semimetric spaces
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2004
SP  - 12
EP  - 21
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a2/
LA  - ru
ID  - DVMG_2004_5_1_a2
ER  - 
%0 Journal Article
%A V. V. Aseev
%A O. A. Lazareva
%T Transfinite diameters and modulii of condensers in semimetric spaces
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2004
%P 12-21
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a2/
%G ru
%F DVMG_2004_5_1_a2
V. V. Aseev; O. A. Lazareva. Transfinite diameters and modulii of condensers in semimetric spaces. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 12-21. http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a2/

[1] M. Fekete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 17 (1923), 228–249 | DOI | MR | Zbl

[2] M. Fekete, “Über den transfiniten Durchmesser ebener Punktmengen”, Math. Z., 32:2 (1930), 215–221 | DOI | MR | Zbl

[3] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR

[4] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966, 516 pp. | MR | Zbl

[5] G. D. Anderson, M. Vamanamurthy, “The transfinite moduli of condensers in space”, Tôhoku Math. J., 40:1 (1988), 1–25 | DOI | MR | Zbl

[6] T. Bagby, “The modulus of a plane condenser”, J. Math. Mech., 17 (1967), 315–329 | MR | Zbl

[7] N. V. Zorii, O diskretnykh kharakteristikakh prostranstvennykh kondensatorov, Preprint No 89.34, In-t matem. AN USSR, Kiev, 1989, 23 pp. | MR

[8] N. V. Zorii, “Emkosti i diskretnye kharakteristiki prostranstvennykh kondensatorov”, Ukr. matem. zh., 42:9 (1990), 1192–1199 | MR

[9] V. V. Aseev, “On the conformal modulus distortion under quasimöbius mappings”, Ann. Acad. Sci. Fenn. Ser A1 Math., 16 (1991), 155–168 | MR | Zbl

[10] V. V. Aseev, “Deformatsiya plastin malykh kondensatorov i problema P. P. Belinskogo”, Sib. mat. zh., 42:6 (2001), 1215–1230 ; “Поправка к статье”, Сиб. мат. ж., 44:1 (2003), 232–235 | MR | Zbl | MR | Zbl

[11] V. V. Aseev, “Ploskie otobrazheniya, sokhranyayuschie moduli”, Dokl. AN SSSR, 310:5 (1990), 1033–1034 | MR | Zbl

[12] Dzh. L. Kelli, Obschaya topologiya, Nauka, M., 1981, 432 pp. | MR

[13] G. N. Chernousov, O prodolzhenii do izometrii gomeomorfizmov, sokhranyayuschikh konformnye moduli v giperbolicheskom prostranstve, Preprint No 32, Institut matematiki SO RAN, Novosibirsk, 1996, 16 pp.