Transfinite diameters and modulii of condensers in semimetric spaces
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 12-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical definitions for transfinite diameter of a set and for transfinite (discrete) modulus of a condenser in $R^n$ have been extended for the objects in semimetric spaces. The Anderson-Vamanamurthy's folmula has been proved to be valid in arbitrary semimetric spaces. The Belinskij's problem on the Mobius property of topological embeddings, which are preserving transfinite modulii of all condensers of the given type, has been solved in the spaces with a continuous semimetric. Bibl. 12.
@article{DVMG_2004_5_1_a2,
     author = {V. V. Aseev and O. A. Lazareva},
     title = {Transfinite diameters and modulii of condensers in semimetric spaces},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {12--21},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a2/}
}
TY  - JOUR
AU  - V. V. Aseev
AU  - O. A. Lazareva
TI  - Transfinite diameters and modulii of condensers in semimetric spaces
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2004
SP  - 12
EP  - 21
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a2/
LA  - ru
ID  - DVMG_2004_5_1_a2
ER  - 
%0 Journal Article
%A V. V. Aseev
%A O. A. Lazareva
%T Transfinite diameters and modulii of condensers in semimetric spaces
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2004
%P 12-21
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a2/
%G ru
%F DVMG_2004_5_1_a2
V. V. Aseev; O. A. Lazareva. Transfinite diameters and modulii of condensers in semimetric spaces. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 12-21. http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a2/