Study of spectral properties of a translation operator
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 158-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

The resolvent for a translation operator is constructed. The evaluation of its norm is obtained. From an evaluation follows, that the translation operator is a yielding operator strongly of continuous group of operators.
@article{DVMG_2004_5_1_a15,
     author = {V. I. Zhukova and L. N. Gamolja},
     title = {Study of spectral properties of a translation operator},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {158--164},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a15/}
}
TY  - JOUR
AU  - V. I. Zhukova
AU  - L. N. Gamolja
TI  - Study of spectral properties of a translation operator
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2004
SP  - 158
EP  - 164
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a15/
LA  - ru
ID  - DVMG_2004_5_1_a15
ER  - 
%0 Journal Article
%A V. I. Zhukova
%A L. N. Gamolja
%T Study of spectral properties of a translation operator
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2004
%P 158-164
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a15/
%G ru
%F DVMG_2004_5_1_a15
V. I. Zhukova; L. N. Gamolja. Study of spectral properties of a translation operator. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 158-164. http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a15/

[1] J. Lehner, G. Wing, “On the spectrum of an unsymmetric operator arising in the transport theory of neutrons”, Comm. Pure Appl. Math., 8 (1955), 217–234 | DOI | MR | Zbl

[2] J. Lehner, G. Wing, “Solution of the linearized Boltzmann equation for the slab geometry”, Duke Math. J., 23 (1956), 125–142 | DOI | MR | Zbl

[3] Dzh. M. Ving, “Kineticheskaya teoriya i spektralnye problemy”, Teoriya yadernykh reaktorov, ed. G. Birkkhof, E. Vigner, M., 1963, 160

[4] K. Jörgens, “An Asimptotic expansion in the theory of neutron transport”, Comm. Pure Appl. Math., 11 (1958), 219 | DOI | MR | Zbl

[5] S. B. Shikhov, “Nekotorye voprosy matematicheskoi teorii kriticheskogo sostoyaniya reaktora”, Zh. vychisl. matematiki i matem. fiz., 7:1 (1967), 113–127

[6] S. B. Shikhov, Voprosy matematicheskoi teorii reaktorov. Lineinyi analiz, Atomizdat, M., 1973, 375 pp.

[7] J. Lehner, “The spectrum of neutron transport operator for the infinite slab”, J. Math. Mech., 11:2 (1962), 173–181 | MR | Zbl

[8] V. I. Zhukova, “Issledovaniya spektralnykh svoistv operatora perenosa”, Sbornik trudov nauchno-prakticheskoi konferentsii DVGUPS, v. 2, Khabarovsk, 1997, 180–181 pp.

[9] Yu. A. Kuperin, S. N. Naboko, R. V. Romanov, “Spektralnyi analiz odnoskorostnogo operatora perenosa i funktsionalnaya model”, Funktsionalnyi analiz i ego prilozheniya, 33:3 (1999), 47–58 | MR | Zbl

[10] V. I. Zhukova, “Spektralnye svoistva operatora perenosa”, Trudy vserossiiskoi nauchno-prakticheskoi konferentsii, v. 5, Chita, 2000, 170–174

[11] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962, 829 pp. | MR

[12] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR