On uniqueness of solutions of control problems for the stationary model of viscous magnetic hydrodynamics
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 142-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Control problems for the stationary model of viscous magnetic hydrodynamics under inhomogeneous boundary conditions for the velocity and electromagnetic field are considered. These problems consist of minimization of certain cost functionals dependent on weak solutions of the boundary value problems. The sufficient conditions of the regularity of the Lagrange multipliers and the local uniqueness of the solutions of the control problems are deduced.
@article{DVMG_2004_5_1_a14,
     author = {G. V. Alekseev},
     title = {On uniqueness of solutions of control problems for the stationary model of viscous magnetic hydrodynamics},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {142--157},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a14/}
}
TY  - JOUR
AU  - G. V. Alekseev
TI  - On uniqueness of solutions of control problems for the stationary model of viscous magnetic hydrodynamics
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2004
SP  - 142
EP  - 157
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a14/
LA  - ru
ID  - DVMG_2004_5_1_a14
ER  - 
%0 Journal Article
%A G. V. Alekseev
%T On uniqueness of solutions of control problems for the stationary model of viscous magnetic hydrodynamics
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2004
%P 142-157
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a14/
%G ru
%F DVMG_2004_5_1_a14
G. V. Alekseev. On uniqueness of solutions of control problems for the stationary model of viscous magnetic hydrodynamics. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 142-157. http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a14/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1982, 624 pp. | MR

[2] G. V. Alekseev, Teoreticheskii analiz obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti, Preprint No 1. IPM DVO RAN, Dalnauka, Vladivostok, 2002, 78 pp.

[3] L. S. Hou, A. J. Meir, “Boundary optimal control of MHD flows”, Appl. Math. Opt., 32 (1995), 143–162 | DOI | MR | Zbl

[4] G. V. Alekseev, “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, Prikl. mekh. tekhn. fiz., 44:6 (2003), 170–179 | MR | Zbl

[5] G. V. Alekseev, “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Dokl. RAN, 395:3 (2004), 322–325 | MR

[6] G. V. Alekseev, “Razreshimost zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Sib. mat. zhurn., 45:2 (2004), 243–262 | MR

[7] A. J. Meir, “The equations of stationary, incompressible magnetohydrodynamics with mixed boundary conditions”, Comp. Math. Applic., 25 (1993), 13–29 | DOI | MR | Zbl

[8] G. V. Alekseev, R. V. Brizitskii, “Razreshimost smeshannoi zadachi dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Dalnevost. mat. zhurn., 3:2 (2002), 285–301

[9] G. V. Alekseev, R. V. Brizitskii, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti so smeshannymi granichnymi usloviyami”, Dalnevost. mat. zhurn., 4:1 (2003), 108–126

[10] R. V. Brizitskii, “O regulyarnosti i edinstvennosti reshenii zadach upravleniya dlya statsionarnykh uravnenii MGD vyazkoi zhidkosti so smeshannymi granichnymi usloviyami”, Dalnevost. mat. zhurn., 4:2 (2003), 264–275

[11] A. Valli, Orthogonal decompositions of ${\mathbf L}^2(\Omega)^3$, Preprint UTM 493. Department of Mathematics, University of Toronto, Galamen, 1995

[12] A. Alonso and A. Valli, “Some remarks on the characterization of the space of tangential traces of ${\mathbf H}(rot;\Omega)$ and the construction of the extension operator”, Manuscr. Math., 89 (1996), 159–178 | DOI | MR | Zbl

[13] L. Hou, S. Ravindran, “Computations of boundary optimal control problems for an electrically conducting fluid”, J. Comp. Phys., 128 (1996), 319–330 | DOI | MR | Zbl

[14] G. V. Alekseev, “Razreshimost obratnykh ekstremalnykh zadach dlya statsionarnykh uravnenii teplomassoperenosa”, Sib. mat. zhurn., 42:5 (2001), 971–991 | MR | Zbl

[15] V. Girault, P. A. Raviart, Finite element methods for Navier – Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986 | MR | Zbl