The modelling of finite elastic-plastic deformation in non-isothermal case
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 110-120
Cet article a éte moissonné depuis la source Math-Net.Ru
The closed system of equation of finite elastic-plastic deformation mathematical model, when deforming is carried out in requirements of temperature changing, is obtained. In the basis of model The differential definitions for reversible and irreversible strains (equation of transport) are put. Sequential usage of non-equilibrium thermodynamics has allowed to construct mathematical model of deforming process, which is free from the problems of “select” of an objective derivative in definition of rate of irreversible strains tensor.
@article{DVMG_2004_5_1_a12,
author = {L. V. Kovtanjuk},
title = {The modelling of finite elastic-plastic deformation in non-isothermal case},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {110--120},
year = {2004},
volume = {5},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a12/}
}
L. V. Kovtanjuk. The modelling of finite elastic-plastic deformation in non-isothermal case. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 110-120. http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a12/
[1] G. I. Bykovtsev, A. V. Shitikov, “Konechnye deformatsii uprugoplasticheskikh sred”, DAN, 311:1 (1990), 59–62 | MR | Zbl
[2] V. P. Myasnikov, “Uravneniya dvizheniya uprugoplasticheskikh materialov pri bolshikh deformatsiyakh”, Vestnik DVO RAN, 1996, no. 4, 8–14
[3] A. A. Burenin, G. I. Bykovtsev, L. V. Kovtanyuk, “Ob odnoi prostoi modeli dlya uprugoplasticheskoi sredy pri konechnykh deformatsiyakh”, DAN, 347:2 (1996), 199–201 | Zbl
[4] V. I. Levitas, Bolshie uprugoplasticheskie deformatsii materialov pri vysokom davlenii, Nauk. dumka, Kiev, 1987, 232 pp. | Zbl