Geometrical and kinematics restriction on functions discontinuities on moving surfaces
Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 100-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In case when a motion of uninterrupted medium is defined for a curvilinear coordinate system, recurrence relations connecting derivative discontinuities of any order on moving surfaces of discontinuity are received.
@article{DVMG_2004_5_1_a11,
     author = {E. A. Gerasimenko and V. E. Ragozina},
     title = {Geometrical and kinematics restriction on functions discontinuities on moving surfaces},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {100--109},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a11/}
}
TY  - JOUR
AU  - E. A. Gerasimenko
AU  - V. E. Ragozina
TI  - Geometrical and kinematics restriction on functions discontinuities on moving surfaces
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2004
SP  - 100
EP  - 109
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a11/
LA  - ru
ID  - DVMG_2004_5_1_a11
ER  - 
%0 Journal Article
%A E. A. Gerasimenko
%A V. E. Ragozina
%T Geometrical and kinematics restriction on functions discontinuities on moving surfaces
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2004
%P 100-109
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a11/
%G ru
%F DVMG_2004_5_1_a11
E. A. Gerasimenko; V. E. Ragozina. Geometrical and kinematics restriction on functions discontinuities on moving surfaces. Dalʹnevostočnyj matematičeskij žurnal, Tome 5 (2004) no. 1, pp. 100-109. http://geodesic.mathdoc.fr/item/DVMG_2004_5_1_a11/

[1] T. Tomas, Plasticheskoe techenie i razrushenie v tverdykh telakh, Mir, M., 1964, 308 pp.

[2] G. I. Bykovtsev, D. D. Ivlev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998, 528 pp.

[3] L. A. Babicheva, G. I. Bykovtsev, N. D. Verveiko, “Luchevoi metod resheniya dinamicheskikh zadach v uprugo–vyazko–plasticheskikh sredakh”, Prikladnaya matematika i mekhanika, 37:1 (1973), 145–155 | Zbl

[4] G. I. Bykovtsev, I. A. Vlasova, “Osobye linii i poverkhnosti v prostranstvennykh techeniyakh idealnykh zhestko-plasticheskikh sred”, Mekh. deform. tv. t. (dinamika sploshnoi sredy), 41 (1979), 31–43, Novosibirsk

[5] A. P. Bestuzheva, G. I. Bykovtsev, V. N. Durova, “K issledovaniyu nestatsionarnykh poverkhnostnykh voln v nelineino–uprugikh sredakh”, Prikl. mekhanika, 17:12 (1981), 27–33 | Zbl

[6] A. G. Shatalov, “Razryvnye resheniya v svyazannoi zadache termouprugosti”, Mekhanika deform. sred, Kuibyshevskii un-t, 1979, 85–90 pp.

[7] “A Ray solving boundary–value problem connected with the propagation of finite amplitude waves”, Nonlinear theory and its applications, Int. Simp., Hawaii, 1993

[8] A. A. Burenin, “Ob odnoi vozmozhnosti postroeniya priblizhennykh reshenii nestatsionarnykh zadach dinamiki uprugikh sred pri udarnykh vozdeistviyakh”, Dalnevostochnyi mat. sbornik, 8 (1999), 49–72

[9] M. A. Grinfild, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990, 312 pp. | MR

[10] A. A. Burenin, P. V. Zinovev, V. E. Ragozina, “Ob odnoi vozmozhnosti algoritmicheskogo vydeleniya poverkhnostei razryvov v raschetakh udarnogo deformirovaniya”, Sbornik dokladov, Vseros. shkola–seminar po sovremennym problemam mekhaniki deformiruemogo tverdogo tela, NGTU, Novosibirsk, 2003, 33–36

[11] A. A. Burenin, P. V. Zinovev, “K probleme vydeleniya poverkhnostei razryvov v chislennykh metodakh dinamiki deformiruemykh sred”, Problemy mekhaniki, Sbornik statei k 90–letiyu A. Yu. Ishlinskogo, Fizmatlit, M., 2003, 146–155 pp.

[12] A. Dzh. Mak-Konnel, Vvedenie v tenzornyi analiz s prilozheniyami k geometrii, mekhanike i fizike, Gos. izdatelstvo fiziko-matematicheskoi literatury, M., 1963, 411 pp.

[13] Yu. A. Rossikhin, M. V. Shitikova, “Ray method for solving dynamic problems connected with propagation of wave surfaces of strong and weak discontinuities”, Appl. mech. rev., 48:1 (1995), 1–39 | DOI