Rheological models of hetero-modular and granular media
Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 252-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general scheme for the construction of the mathematical models of uniaxial deformation of rheologically complicated media is described considering different resistrance to stretching and compression deformation. The different possibilities in the way of model generalization to the case of spatial stress and strain state are investigated. The incoming to the models identification problem is discussed. The set of equations that can be used at construction ofeffective calculating algorithms is obtained.
@article{DVMG_2003_4_2_a7,
     author = {V. M. Sadovskii},
     title = {Rheological models of hetero-modular and granular media},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {252--263},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a7/}
}
TY  - JOUR
AU  - V. M. Sadovskii
TI  - Rheological models of hetero-modular and granular media
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2003
SP  - 252
EP  - 263
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a7/
LA  - ru
ID  - DVMG_2003_4_2_a7
ER  - 
%0 Journal Article
%A V. M. Sadovskii
%T Rheological models of hetero-modular and granular media
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2003
%P 252-263
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a7/
%G ru
%F DVMG_2003_4_2_a7
V. M. Sadovskii. Rheological models of hetero-modular and granular media. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 252-263. http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a7/

[1] V. V. Sokolovskii, Statika sypuchei sredy, Fizmatlit, M., 1960, 244 pp. | MR

[2] V. P. Maslov, V. P. Myasnikov, V. G. Danilov, Matematicheskoe modelirovanie avariinogo bloka Chernobylskoi AES, Nauka, M., 1988, 144 pp. | MR

[3] V. N. Nikolaevskii, “Opredelyayuschie uravneniya plasticheskogo deformirovaniya sypuchei sredy”, PMM, 35:6 (1971), 1070–1082

[4] Yu. V. Golovanov, I. V. Shirko, “Obzor sovremennogo sostoyaniya mekhaniki bystrykh dvizhenii granulirovannykh materialov”, Mekhanika granulirovannykh sred: Teoriya bystrykh dvizhenii, Novoe v zarubezhnoi nauke, 36, Mir, M., 1985, 271–279 pp.

[5] A. Khaar, T. Karman, “K teorii napryazhennykh sostoyanii v plasticheskikh i sypuchikh sredakh”, Teoriya plastichnosti, IL., M., 1948, 41–56

[6] A. I. Oleinikov, “O modeli raznomodulnoi sredy s ogranicheniyami”, DAN, 334:243 3 (1994), 314–316 | MR | Zbl

[7] G. I. Bykovtsev, D. D. Ivlev, Teoriya plastichnosti, Dalnauka, Vladivostok, 1998, 528 pp.

[8] V. M. Sadovskii, “Zadachi dinamiki sypuchikh sred”, Mat. modelirovanie, 13:243 5 (2001), 62–74 | Zbl

[9] Z. Mruz, Ch. Shimanskii, “Neassotsiirovannyi zakon techeniya v opisanii plasticheskogo techeniya granulirovannykh sred”, Mekhanika granulirovannykh sred: Teoriya bystrykh dvizhenii, Novoe v zarubezhnoi nauke, 36, Mir, M., 1985, 9–43

[10] V. L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 448 pp. | MR

[11] V. E. Nakoryakov, B. G. Pokusaev, I. R. Shreiber, Volnovaya dinamika gazo- i parozhidkostnykh sred, Energoatomizdat, M., 1990, 248 pp. | MR