Critical frequencies influence on formulation of the problem of a thin wing oscillation in a gas flow
Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 226-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

Thin wing oscillation problem is considered in supersonic, transonic and hypersonic flow. Asymptotic formulation of the problem changes with transition over critical frequencies.
@article{DVMG_2003_4_2_a4,
     author = {R. G. Barantsev},
     title = {Critical frequencies influence on formulation of the problem of a thin wing oscillation in a gas flow},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {226--230},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a4/}
}
TY  - JOUR
AU  - R. G. Barantsev
TI  - Critical frequencies influence on formulation of the problem of a thin wing oscillation in a gas flow
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2003
SP  - 226
EP  - 230
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a4/
LA  - ru
ID  - DVMG_2003_4_2_a4
ER  - 
%0 Journal Article
%A R. G. Barantsev
%T Critical frequencies influence on formulation of the problem of a thin wing oscillation in a gas flow
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2003
%P 226-230
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a4/
%G ru
%F DVMG_2003_4_2_a4
R. G. Barantsev. Critical frequencies influence on formulation of the problem of a thin wing oscillation in a gas flow. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 226-230. http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a4/

[1] R. G. Barantsev, “Metod poryadkovykh uravnenii”, Dalnevostochnyi matematicheskii zhurnal, 2:2 (2001), 5–9

[2] R. G. Barantsev, “Order equations method in non-stationary gasdynamics”, Theory and Applications. Lodz., 6th Conference on Dynamical Systems (December 10–12), Proceedengs, 2001, 19–26

[3] R. G. Barantsev, I. A. Mikhailova, I. M. Tsitelov, “K opredeleniyu poryadka vozmuschayuschikh funktsii v metode malykh vozmuschenii”, Inzhen. zh-l, 1:2 (1961), 69–81 | MR | Zbl

[4] R. G. Barantsev, Lektsii po transzvukovoi gazodinamike, LGU, L., 1965, 216 pp. | MR

[5] S. B. Radzevich, “K zadache potentsialnogo obtekaniya tonkogo koleblyuschegosya profilya sverkhzvukovym potokom gaza”, Asimptoticheskie metody v teorii sistem, Irkutsk, 1990, 68–76

[6] R. G. Barantsev, S. B. Radzevich, “Asimptoticheskaya postanovka zadach o kolebaniyakh kryla v transzvukovom potoke na razlichnykh intervalakh chastot”, Asimptoticheskie metody v dinamike sistem, Irkutsk, 1985, 174–178

[7] Barantsev R.G., Kachaeva I.N., “K opredeleniyu poryadkov vozmuschenii v ravnomernom giperzvukovom potoke”, Zapiski LGI, 52:3 (1974), 97–100

[8] A. O. Lyubin, “Opredelenie poryadkov vozmuschenii pri obtekanii tonkogo koleblyuschegosya profilya ravnomernym giperzvukovym potokom”, Asimptoticheskie metody v teorii sistem, Irkutsk, 1976, 118–132