On I.\,P.~Mityuk's reduced modulus
Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 167-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the reduced modulus of an arbitrary open set with respect to several points of the set and some boundary arcs. This generalizes the reduced modulus introduced by I. P. Mityuk in 1964. We study the basic properties of this modulus — its behavior under extension, conformal mapping and the composition principles. As an application, the theorems on non-overlapping domains and the covering theorems under conformal mapping have been generalized.
@article{DVMG_2003_4_2_a2,
     author = {N. V. Eyrikh},
     title = {On {I.\,P.~Mityuk's} reduced modulus},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {167--181},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a2/}
}
TY  - JOUR
AU  - N. V. Eyrikh
TI  - On I.\,P.~Mityuk's reduced modulus
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2003
SP  - 167
EP  - 181
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a2/
LA  - ru
ID  - DVMG_2003_4_2_a2
ER  - 
%0 Journal Article
%A N. V. Eyrikh
%T On I.\,P.~Mityuk's reduced modulus
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2003
%P 167-181
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a2/
%G ru
%F DVMG_2003_4_2_a2
N. V. Eyrikh. On I.\,P.~Mityuk's reduced modulus. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 167-181. http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a2/

[1] I. P. Mityuk, “Obobschennyi privedennyi modul i nekotorye ego primeneniya”, Izv. vuzov. Matematika, 1964, no. 2, 110–119 | Zbl

[2] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, Izd-vo inostr. lit., M., 1962

[3] V. N. Dubinin, N. V. Eirikh, “Obobschennyi privedennyi modul”, Dalnevost. mat. zhurn., 3:2 (2002), 150–165 | MR

[4] G. V. Vittikh, Noveishie issledovaniya po odnoznachnym analiticheskim funktsiyam, Fizmatgiz, M., 1960 | MR

[5] I. P. Mityuk, “Pro odnolisti konformni vidobrazhennya mnogosv'yaznikh oblastei”, DAN URSR, 158–160:2 (1961) | Zbl

[6] V. A. Shlyk, “Emkost kondensatora i modul semeistva razdelyayuschikh poverkhnostei”, Zap. nauchn. sem. LOMI, 185, 1990, 168–182 | MR

[7] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Zap. nauchn. semin. POMI, 254, 1998, 76–94 | MR

[8] Yu. E. Alenitsyn, “Ob odnolistnykh funktsiyakh v mnogosvyaznykh oblastyakh”, Mat. sb., 39(81):3 (1956), 315–336 | Zbl

[9] Yu. E. Alenitsyn, “O funktsiyakh bez obschikh znachenii i vneshnei granitse oblasti znachenii funktsii”, Mat. sb., 46(88):4 (1958), 373–388 | Zbl

[10] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[11] V. N. Dubinin, “Simmetrizatsiya v teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[12] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii I, II”, Algebra i analiz, 9:3 (1997), 41–103 ; 5, 1–50 | MR | Zbl | MR | Zbl

[13] L. I. Volkovyskii, G. L. Lunts, I. G. Aramanovich, Sbornik zadach po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1970 | MR