The analytic properties of the Mellin transform of the second power of the ``short'' sum from the Riemann zeta-function approximate equation
Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 153-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

The approximate functional equation for $\left|\zeta\left(\dfrac{1}{2}+it\right)\right|^{2}$ ($t\gg 1$) is a sum of two sums and remainder. The first sum, called a “short” sum, contains $O(t^{2\varepsilon})$ terms, and the second sum contains $O(t^{2(1-\varepsilon)})$ terms ($0\varepsilon\frac12$). In this paper, we study analytic properties of the Mellin transform of the second power of the “short” sum absolute value and compare them with the corresponding properties of the Mellin transform of $\left|\zeta\left(\dfrac{1}{2}+it\right)\right|^{4}$.
@article{DVMG_2003_4_2_a0,
     author = {L. V. Marchenko},
     title = {The analytic properties of the {Mellin} transform of the second power of the ``short'' sum from the {Riemann} zeta-function approximate equation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {153--161},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a0/}
}
TY  - JOUR
AU  - L. V. Marchenko
TI  - The analytic properties of the Mellin transform of the second power of the ``short'' sum from the Riemann zeta-function approximate equation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2003
SP  - 153
EP  - 161
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a0/
LA  - ru
ID  - DVMG_2003_4_2_a0
ER  - 
%0 Journal Article
%A L. V. Marchenko
%T The analytic properties of the Mellin transform of the second power of the ``short'' sum from the Riemann zeta-function approximate equation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2003
%P 153-161
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a0/
%G ru
%F DVMG_2003_4_2_a0
L. V. Marchenko. The analytic properties of the Mellin transform of the second power of the ``short'' sum from the Riemann zeta-function approximate equation. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 2, pp. 153-161. http://geodesic.mathdoc.fr/item/DVMG_2003_4_2_a0/

[1] A. Ivić, “On some conjectures and results for the Riemann Zeta–function and Hecke series”, Acta Arith., 109 (2001), 115–145 | DOI | MR

[2] E. K. Titchmarsh, Vvedenie v teoriyu integralov Fure, OGIZ Gostekhizdat, M.–L., 1948, 480 pp.

[3] E. K. Titchmarsh, Teoriya dzeta–funktsii Rimana, IL, M., 1953, 408 pp.

[4] E. K. Titchmarsh, Teoriya funktsii, Nauka, M., 1980, 464 pp. | MR | Zbl