Stabilization from the boundary of solution for Navier-Stokes system: solvability and justification of numerical simulation
Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 86-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

A stabilization method for solution of Navier-Stokes system near steady-state (unstable) solution is expounded. Stabilization is done by a control from the boundary of the domain where equations are defined. Important point of the stabilization problem which we study in this paper is justification of possibility for numerical simulation. We solve the problem choosing feedback control.
@article{DVMG_2003_4_1_a9,
     author = {A. V. Fursikov},
     title = {Stabilization from the boundary of solution for {Navier-Stokes} system: solvability and justification of numerical simulation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {86--100},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a9/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - Stabilization from the boundary of solution for Navier-Stokes system: solvability and justification of numerical simulation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2003
SP  - 86
EP  - 100
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a9/
LA  - ru
ID  - DVMG_2003_4_1_a9
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T Stabilization from the boundary of solution for Navier-Stokes system: solvability and justification of numerical simulation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2003
%P 86-100
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a9/
%G ru
%F DVMG_2003_4_1_a9
A. V. Fursikov. Stabilization from the boundary of solution for Navier-Stokes system: solvability and justification of numerical simulation. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 86-100. http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a9/

[1] A. V. Fursikov, “Stabiliziruemost kvazilineinogo parabolicheskogo uravneniya s pomoschyu granichnogo upravleniya s obratnoi svyazyu”, Mat. sb., 192:4 (2001), 115–160 | MR | Zbl

[2] A. V. Fursikov, “Stabilizability of two-dimensional Navier – Stokes equation with help of boundary feedback control”, J. Math. Fluid Mech., 3 (2001), 259–301 | DOI | MR | Zbl

[3] A.V. Fursikov, “Feedback stabilization for 2D Navier – Stokes equation”, The Navier – Stokes equation: Theory and Numerical Methods, Lecture Note Pure Appl. Math., 223, 2001, 179–196 | MR

[4] A. V. Fursikov, “Feedback stabilization for 2D Ozeen equation: additienal remarks”, Control and Estimation of Distributed Parameter Systems, International series of Numerical Mathematics, Burkhäser Verlag, 2002, 169–188

[5] A. V. Fursikov, “Stabilization for the 3D Navier – Stikes system by feedback boundary control”, Discrete Cont. Dyn. Syst., 9:6 (2003) | MR

[6] A. V. Fursikov, “Real process corresponding to 3D Navier – Stokes system and its feedback stabilization from boundary”, Advances in the Math Sciences-51, PDE M. Vishik's Seminar, Amer. Math. Soc. Transl. Series 2, 206, AMS, Providence, Rhode Island, 2002, 95–123 | MR | Zbl

[7] A. V. Fursikov, “Realnye protsessy i realizuemost metoda stabilizatsii sistemy Nave – Stoksa posredstvom upravleniya s obratnoi svyazyu s granitsy oblasti”, Nelineinye zadachi matematicheskoi fiziki i smezhnye voprosy. II, V chest akademika O. A. Ladyzhenskoi, Mezhdunar. matem. seriya, 2, 2002, 127–164

[8] M. V. Keldysh, “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh operatorov”, UMN, 26:4 (1971), 15–41 | MR | Zbl

[9] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[10] M. I. Vishik, A. V. Fursikov, Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[11] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl