Asymptotic characteristics of output flows in queueing networks
Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 36-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a construction of tail asymptotics of interdeparture intervals in queuing systems. These asymptotics are considered in a case when interarrival intervals and serving times have subexponential distributions. It is shown that such asymptotics depends mainly on heavier considered tail. An influence of the queuing system structure (one-server, multi-server, multi-phase and etc.) on the tails is investigated. Asymptotic of free period tail is investigated. It is proved that in wide assumptions this asymptotic is equivalent to interarrival tail asymptotic independently on the queuing system structure.
@article{DVMG_2003_4_1_a4,
     author = {G. Sh. Tsitsiashvili and N. V. Markova},
     title = {Asymptotic characteristics of output flows in queueing networks},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {36--43},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a4/}
}
TY  - JOUR
AU  - G. Sh. Tsitsiashvili
AU  - N. V. Markova
TI  - Asymptotic characteristics of output flows in queueing networks
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2003
SP  - 36
EP  - 43
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a4/
LA  - ru
ID  - DVMG_2003_4_1_a4
ER  - 
%0 Journal Article
%A G. Sh. Tsitsiashvili
%A N. V. Markova
%T Asymptotic characteristics of output flows in queueing networks
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2003
%P 36-43
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a4/
%G ru
%F DVMG_2003_4_1_a4
G. Sh. Tsitsiashvili; N. V. Markova. Asymptotic characteristics of output flows in queueing networks. Dalʹnevostočnyj matematičeskij žurnal, Tome 4 (2003) no. 1, pp. 36-43. http://geodesic.mathdoc.fr/item/DVMG_2003_4_1_a4/

[1] P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997 | MR | Zbl

[2] S. Asmussen, Ruin Probabilities, World Scientific, Singapore, 2000 | MR

[3] T. Rolski, H. Schmidli, V. Schmidt, J. Teugels, Stochastic Processes for Insurance and Finance, Wiley, New York, 1999 | MR | Zbl

[4] S. Foss, F. Baccelli, D. Korshunov, “Asymptotics for Distributions of Stationary Characteristics in Queuing Networks with Heavy Tails”, Abstracts of Workshop “Modern Problems in Applied Probability”, Novosibirsk, 2000, 9

[5] J. Kiefer, J. Wolfowitz, “On the theory of queues with many servers”, Trans. Amer. Math. Soc., 78 (1955), 147–161 | MR

[6] D. B. H. Cline, “Convolution tails, product tails and domains of attraction”, Probab. Theory Relat. Fields, 72:4 (1986), 529–557 | DOI | MR | Zbl

[7] D. B. H. Cline, “Convolutions of distributions with exponential and subexponential tails”, J. Austral. Math. Soc. Ser. A, 43 (1987), 347–365 | DOI | MR | Zbl

[8] P. Embrechts , C. M. Goldie, “On closure and factorization properties of subexponential and related distributions”, J. Austral. Math. Soc. Ser. A, 29:2 (1980), 243–256 | DOI | MR | Zbl